
مناقشة رسالة طالب الماجستير محمد نزار فليح من قسم علوم الرياضيات
أضيف بواسطة : عبد الله سامر | #مناقشات_الدراسات_العليا |
ناقش قسم علوم الرياضيات في كلية العلوم بجامعة ديالى رسالة طالب الماجستير محمد نزار فليح الموسومة التنادد المقيد على أساس السلاسل المقيدة وذلك في يوم الأربعاء الموافق 2021/7/28 وعلى قاعة المناقشات في قسم علوم الكيمياء.
أوضح الطالب في دراسته أن الهدف الرئيسي من هذا العمل هو شرح وتوضيح بنية الفضاء البرنولوجي. كذلك ، حيث تم بناء هياكل برنولوجيه جديدة بطرق مختلفة. على سبيل المثال ، تم انشاء برنولوجي من القاعدة والقاعدة الفرعية. أيضًا ، كما تم ببناء برنولوجي مرتبط بتطبيق خاص وهو ((Stable Operator. أيضا ، وتم تقديم العديد من النتائج والخصائص التي تخص الفضاء البرنولوجي.
وأن الجزء الأكثر أهمية في العمل هو تقديم بعض التطبيقات العملية لفضاء البرنولوجي. وكذلك ، تم وصف فكرة الزمر البرنولوجية والتي تم ترميزها بالرمز (BG) في هذا العمل مع بعض الأمثلة. بالإضافة إلى ذلك ، فإن الهدف الأساسي لهذا العمل هو تقديم دوال مقيده (Actions)، وهي دوال مقيده يتم تنفيذها على الفضاء البرنولوجي. يشار الآن إلى جميع الخواص المتعلقة بمجموعات G على أنها مجموعات G-bornological.
كما تم عرض بعض الحقائق الأساسية التي هي صحيحة. بالنسبة للدوال المقيدة ، حيث ظهر بشكل خاص ، أن حدود عمل الفضاء البرنولوجي يمكن اشتقاقها في موضوع الهوية ، تتم دراسة مجموعة علم البرنولوجي للمدارات ، ووجد أن حاصل القسمة X / G هو رمز على حاصل البرنولوجي. بالإضافة إلى ذلك ، يُشار إلى مجموعة حاصل البرنولوجي الخاصة بالدوال(ِActions)على هذا النحو. أخيرًا ، نقوم ببناء chomology مقيد استنادًا إلى cochain المقيد. تتمثل إحدى السمات الرئيسية لمجموعات cochain المقيده في أنها تؤدي إلى تسلسلات دقيقة طويلة في علم الكهومولوجي ، وهي أول نتيجة رئيسية. علاوة على ذلك ، قد يبدو أن الهدف النهائي هو العثور على تعريف لعلم الكهومولوجي للمجموعات البرنولوجيه التي ترث جميع الخصائص من الكروب الزمر البرنولوجية. لذلك ، تم تطوير عائلة من المجموعات البرنولوجية باستخدام كوشاينات مقيدة. وهو يعمل مع المجموعة البرنولوجية (G ، β) ووحدات G البرنولوجيه (M ، β). والنتيجة المهمة الرئيسية هي أن نظرية cohomology للكوشاين المقيد تتشابه مع نظرية cohomology للكوشاين المتجانس.
وتألفت لجنة المناقشة من السادة المدرجة أسماؤهم أدناه:
وقد تم قبول الرسالة ومنح الطالب درجة الماجستير في تخصص علوم الرياضيات .. ألف مبارك ..
|
مواضيع ذات صلة | الأرشيف |