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1. Introduction to Astrophysics

1 Introduction to Astrophysics

1.1 Observations and Observables

Astronomy involves the observation of distant objects beyond Earth: from
low-orbit spy satellites to our own Solar System to our Milky Way galaxy
to other distant galaxies and out to the observable edge of the universe. A
non-exhaustive list of some of the types of objects that are observed includes:

1. Planets and moons in our own Solar System

2. Stars (including our Sun)

3. Planets orbiting other stars

4. Remnants of ‘dead’ stars: white dwarfs, neutron stars, and black holes

5. Giant, cool clouds of gas and dust

6. Other galaxies beyond our Milky Way

7. Diffuse, hot gas: between stars, and between galaxies

8. The overall structure of the universe.

These observations are made using a variety of different techniques. Most
frequent is the detection of electromagnetic radiation: everything from high-
energy gamma- and X-rays, through ultraviolet, visible, and infrared light, and
down to microwave and radio waves. When people speak of multi-messenger
astronomy, they mean observations beyond merely electromagnetic detec-
tions. These other approaches involve the direct or indirect detection of high-
energy, particles (i.e., not photons) such as the solar wind, cosmic rays, or
neutrinos from . The newest set of observations includes the detection of grav-
itational waves from distant, massive, rapidly-rotating objects.

Because astronomy is an observationally-driven field, big advances and
new discoveries often occur whenever technological capabilities improve sub-
stantially. Ancient astronomers, from well before Hipparchus down to Ty-
cho Brahe, could only rely on what their own, unaided eyes could see. That
changes with the invention of the telescope: astronomers still had to use their
own eyes, but now they could see finer details (because of optical magnifica-
tion) and study fainter objects (a telescope lens is larger than your eye’s pupil,
so it collects more light).

The next big revolution was astrophotography: a photographic setup can
sit collecting light from a faint source for minutes or even hours, so much
fainter and/or more distant objects could be studied than by just peering
through a telescope. In the last century, the development of photoelectric de-
tectors — first as ‘single-pixel’ devices and later as mega- or giga-pixel optical
CCDs or infrared array detectors — has had at least as big an impact, by virtue
of their dramatically enhanced sensitivity compared to photography. More re-
cently still, other new technologies have also emerged such as interferometry
to give the sharpest possible images at radio to infrared wavelengths, or adap-
tive optics which achieves something similar in the optical and infrared.
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1.2. Astronomy, Astrophysics, and Historical Baggage

1.2 Astronomy, Astrophysics, and Historical Baggage

Astrophysics: effort to understand the nature of astronomical objects. Union
of quite a few branches of physics — gravity, E&M, stat mech, quantum, fluid
dynamics, relativity, nuclear, plasma — all matter, and have impact over a
wide range of length and time scales.

Astronomy: providing the observational data upon which astrophysics is
built. Thousands of years of history, with plenty of intriguing baggage.

Sexagesimal notation

Sexagesimal notation is one example. This means a Base-60 number system,
and it qoriginated in Sumer in ∼3000 BC. Origin uncertain (how could it not
be?), but we still use this today for time and angles: 60” (arc-seconds) in 1’
(arc-minute), 60’ in 1o , 360o in one circle.

We use this angular notation to express where an object is on the Earth’s
surface, as well as where an astronomical object is on the sky. On Earth, this
is through the latitude/longitude system – just a form of spherical coordi-
nates, in which longitude corresponds to φ (the angle around the planet from
the Greenwich meridian) and latitude corresponds to θ (the angle from the
equator). Celestrial coordinates use a related approach: here, Right Ascen-
sion (RA or α) plays the role of φ or longitude (describing the angle from a
point defined by the Earth’s orbit) and Declination (Dec or δ) plays the role
of θ or latitude (describing the angle north or south from a projection of the
Earth’s equator).

Further complicating things, all stars are in motion and so a star’s coordi-
nates slowly change over time. One subtle effect here is due to slow evolutions
in the Earth’s orbit. But for nearby stars, the largest effect is indeed due to their
intrinsic motion; this motion of stars across the sky is called proper motion.
The closest, fastest stars have proper motions of several arcsec per year, but
proper motion is more usually measured in milliarcsec per year, or mas yr−1.
Sources far away (or especially, outside the Milky Way) have essentially zero
proper motion.

The classic astronomer’s website for learning the coordinates, proper mo-
tion, and many other useful details of a given star is SIMBAD1. For the more
well-known stars, Wikipedia isn’t a terrible source either.

The Magnitude System

Magnitudes are an even more notorious example of the weight of historical
tradition. These aren’t especially logical, but all astronomers use them through
tradition (and force of habit) as a standard way of indicating the intrinsic and
apparent brightness of stars and galaxies.

The magnitude system is originally based on the human eye by Hip-
parchus of Greece (∼135 BC), who divided visible stars into six primary
brightness bins. This arbitrary system continued for ∼2000 years, and it makes
it fun to read old astronomy papers (“I observed a star of the first magnitude,”

1http://simbad.u-strasbg.fr/simbad/sim-fid
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1. Introduction to Astrophysics

etc.). This was revised and made somewhat more quantitative by Pogson in
1856, who semi-arbitrarily decreed that a one-magnitude difference between
two objects means that one is ∼2.512× brighter than the other. This is only
an approximation to how the eye works! To further confuse things, thanks
to Hipparchus smaller magnitudes mean brighter stars: so the system ‘feels
backwards.’

So given two stars with apparent brightnesses b1 and b2, their apparent
(i.e., relative) magnitudes are related by:

(1) m1 − m2 = −2.5 log10
b1

b2
.

So a 2.5 mag difference means one object is 10× brighter than the other. Not
very intuitive! However, it turns out that a 2.5× brightness difference also
roughly corresponds to a sim1 mag difference – a nice coincidence. For smaller
variations milli-magnitudes (mmag) are sometimes uesd, and a 1 mmag =
10−3 mag difference corresponds roughly to one object being 1.001× brighter
— so 1 mmag is about a part-in-a-thousand brightness difference.

An alternative way of presenting the apparent magnitude system is by
defining some reference brightness and defining observed magnitudes relative
to that brightness level. In the typical (Vega magnitude) system we will use in
this class, the reference level is the brightness of the star Vega. If we call this
reference brightness b0, then the apparent magnitudes are defined by

(2) m = −2.5 log10
b/b0

.

Absolute magnitudes refer not to how bright objects look to an observer,
but to their intrinsic brightness (i.e., luminosities). We need a reference point,
so we say that an object’s absolute and apparent magnitudes are the same if
the object is 10 pc away from us (again, this is arbitrary – and doesn’t make
so much sense for galaxies that are much larger than 10 pc!). Also, if a star
is (e.g.) 5× further away its light will be spread over 52 more surface area
throughout the universe. The absolute magnitude M of a a star or galaxy is

(3) m–M = 2.5 log10

�
d

10 pc

�2
= 5 log 10

d
10 pc

.

We will see later than absolute magnitudes are directly related to the lumi-
nosity (L, the true intrinsic brightness) of a star in the same way that apparent
magnitudes are related to apparent brightness:

(4) M1 − M2 = −2.5 log10
L1

L2
.

Magnitudes can be either

• bolometric — relating the total electromagnetic power (i.e. luminosity)
of the object (of course, we can never actually measure this unless we
have detectors operating across an infinite wavelength/frequency range

8



1.3. Fundamental Forces

– we need models!)

• wavelength-dependent, in which case the magnitude only relates the
power in a specific wavelength range

Finally, to confuse things just a bit more there are two different kinds
of magnitude systems. These make qualitatively different assumptions about
how they set their zero-points, defining the magnitude of a given brightness.
The older system (which you should assume in this class, unless told other-
wise) is the Vega system, in which magnitudes at different wavelengths are
always relative to a 10,000 K star (similar to the star Vega). The other, more
modern scheme is that of AB magnitudes, in which a given magnitude at any
wavelength always means the same flux density (a term we will define later).

1.3 Fundamental Forces

All of the fundamental physical forces are important for astronomy, but some
are more important than others:

1. Gravity. By far the most important for astronomy! In this course we will
consider the force of gravity more than any other force.

2. Electromagnetism. Also quite important, especially for energy transport
via radiation but also for interactions involving charged particles and
magnetic fields.

3. Weak and Strong Nuclear Forces. Not as critical for many situations
considered in astronomy, but essential for understanding the nuclear
fusion and fission that power stars and supernovae.

1.4 Types of Particles

• Photons. Electromagnetic particles that are also waves. Move at speed
c, have wavelength λ and frequency ν such that c = λν. Have energy
E = hν and momentum p = E/c = h/λ.

• Protons. Positively charged particles with mass approximately 1 amu.
Found in the nuclei of all atoms, where it may be attracted to neutrons
(or even other protons) via the strong nuclear force.

• Neutrons. Chargeless particles with mass approximately 1 amu. Found
in the nuclei of all atoms except 1H, where they are attracted to protons
(as well as other neutrons) via the strong nuclear force. On their own,
will decay relatively quickly via the weak nuclear force.

• Electrons. Negatively charged leptons, with mp/me ∼ 1800. Found in
atoms and also found free at high temperatures when atoms become
ionized.

• Neutrinos. Tiny, tiny, nearly-but-not-quite massless, chargeless particles.
Come in three flavors (as do leptons) but in astrophysics we’re mainly
concerned with the electron neutrino νe and its antiparticle ν̄e.

9



1. Introduction to Astrophysics

• Antiparticles. Every particle has a corresponding antiparticle with the
same mass and opposite charge. When a particle and its antiparticle
meet, they annihilate each other and release their full mass energy, E =
mc2. With enough energy available the reaction can be reversed and a
particle and its antiparticle can be created!

• Atoms and Ions. The building blocks of the universe, and most of it
hydrogen (with most of the rest helium).

• Molecules. Only stable at relatively cool temperatures (� 4000 K), but
found in planets, cool gas clouds, and the outer parts of the coolest
stars.

1.5 Concepts

You will need to be familiar with the following (non-exhaustive) list of con-
cepts in this course:

• Pressure. P = F/A, remember?

• Density. ρ = M/V. ‘Nuff said.

• Number density. The number of particles per volume element, n =
N/V. It is also related to mass density via n = ρ/m = (M/m)1/V.

• Ideal gas. We will assume most arrays of particles are ideal gases. You
may be used to seeing the ideal gas law in the form of PV = NRT, where
R is the ideal gas constant. In astronomy we often cast this instead in
terms of the number density. Dividing by V, we then have P = nkBT,
where kB is the Boltzmann constant.

• Luminosity just refers to the power output by some celestial body. Most
commonly we’ll refer to the luminosity of our own Sun, L� ≈ 4 ×
1026 W.

• Doppler Shift: Waves of a given frequency and wavelength appear dif-
ferently when emitted by a moving object. This applies to light waves
too; at non-relativistic speeds, the observed wavelength

(5) λobs = λemitted (1 + v/c) ,

where v is the radial velocity. An object moving away from Earth has
v > 0 and so λobs > λemitted: its light is redshifted. Light from objects
moving toward the observer is said to be blueshifted.

• Relativity rears its head in several aspects. One is mass-energy equiv-
alence: you’ve heard that E = mc2. If you were to convert 10 kg of
mass into energy in one second, you’d have a power (i.e., luminosity)
of (10 kg)(3 × 108 m s−1)2/1 sec ≈ 1018 W. Only antimatter converts to
energy so entirely, but even nuclear fusion and fission convert enough
to be important for stars and supernovae.
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1.6. OOMA: Order-of-Magnitude Astrophysics

• Quantum mechanics: We will address a few aspects of quantum me-
chanics; these will be introduced as we come across them. One key as-
pect already mentioned is the energy of a single photon, E = hν.

• Thermodynamics: One aspect is thermal equilibrium, whether things
are at the same temperature. E.g., in a star there are both atoms (and
ions, and free electrons) and also photons. If all of these particles have
about the same temperature (i.e. thermal kinetic energy), then the mix-
ture is in thermal equilibrium. Often this applies only in a small region
(after all, a star is hotter inside than on its surface) and so in these cases
we often speak of local thermal equilibrium. Another thermodynamic
quantity we will sometimes use is that in a gas of temperature T, the
average kinetic energy of a typical particle is just �E� = 3

2 kT — when
doing an order-of-magnitude estimate we will sometimes approximate
this further as �E� ≈ kT.

• Order-of-magnitude estimation: The ability to quickly and approxi-
mately calculate quantities of interest.

1.6 OOMA: Order-of-Magnitude Astrophysics

One of the key tools one should have in their toolkit is the ability to quickly
and approximately estimate various quantities. Astronomy is a fun field be-
cause in many cases it’s fine to calculate a quantity to within a factor of a few
of the correct value. When we speak of an order of magnitude, we mean esti-
mating an answer to within a factor of ten or so2. See your “OOMA” handout
for a rundown of handy approximations to many important astronomical and
physical quantities.

We’ll spend a lot of time on stars, so it’s important to understand some key
scales to get ourselves correctly oriented. For example, consider the electron
and neutron, which have me ∼ 10−30 kg and mn ∼ 2 × 10−27 kg. The ratio of
these two is

(6)
mn

me
≈ 1800 ≈ RWD

RNS

where RWD and RNS are the radii of a white dwarf and a neutron star: dead
stellar remnants mainly supported by electrons and neutrons, respectively
(we’ll get to these more, later).

Meanwhile the mass of our Sun is M� ≈ 2× 1030 kg. So while considering
the masses involved might make it seem that objects in this course are astro-
nomically far from the considerations of fundamental physics, this couldn’t
be further from the truth. In fact, many astrophysically large quantities can be
almost purely derived from fundamental physical constants. E.g., the maxi-
mum possible mass of a white dwarf before it collapses under its own weight:

2Note that this is different from astronomical magnitudes, which we discussed previously.
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(7) MWD,max ≈
�

h̄c
G

�3/2
m−2

H

(where mH is the mass of a hydrogen atom), or the Schwarzschild radius (size
of the event horizon) of a nonrotating black hole:

(8) RS = 2
G
c2 MBH.

As another example, consider the gravitational acceleration at Earth’s sur-
face. If one can’t remember that this is 9.8 m s−2, we would hopefully still
remember that g ≡ GM/R2. If we can’t recall M⊕ or R⊕, we might still re-
member that the Earth’s circumference is 2πR⊕ ≈ 40, 000 km and the Earth
has a mean density of about 5 g cm−3 = 5000 kg m−3 (rocks are ∼5× denser
than water). So

(9) R⊕ ≈ 40, 000 km
2π

∼ 40, 000 km
6

∼ 6, 500 km

and

M⊕ = ρ⊕
�

4
3 πR3

⊕
�

∼
�

5 × 103kg m−3
� �

4
�
6.5 × 106 m

�3
�

∼ 20 × 1021 × 250 kg

∼ 5 × 1024 kg.

This is remarkably close (by astronomical standards) to the true value of 5.97×
1024 kg. We could then finally estimate the surface gravity as

g⊕ = G M⊕
R2
⊕

≈
�

2
3 × 10−10 N m2 kg−2

��
5×1024 kg

[6.5×106 m]
2

�

∼ 2 × 5
3 × 40

× 10−10 × 1024

1012 m s−2

∼ 0.1 × 102 m s−2 = 10 m s−2.

Again, surprisingly close to the true value of 9.8 m s−2! So some basic order-
of-magnitude assumptions lead to a pretty good answer – this is often the case
in astrophysics.
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2 Size and Distance Scales

Space is big. Really big. So let’s consider size scales in astrophysics.

2.1 Size Scales

• Bohr radius: the size of a hydrogen atom in Bohr’s semiclassical model
is h̄2/mekee2 ≈ 0.5Å = 5 × 10−11 m.

• Earth radius: Since the French Revolution defined πR⊕ = 20, 000 km,
we have R⊕ ≈ 6, 300 km≈ 6.3 × 106 m.

• Solar radius: a rough rule of thumb is that R� ∼ 100R⊕, and so R� ≈
7 × 108 m. (If you like gas giant planets such as Jupiter, RJup ∼ 10R⊕ ∼
1/10R�.)

• Astronomical unit: the distance from the Earth to the Sun. A rough rule
of thumb is that 1 au≈ 200R�, and so 1 au≈ 1.5 × 1011 m. (This is also
roughly 8 light-minutes.)

• Parsec: the fundamental unit of distance beyond the Solar System (no
‘light years’ here). Space is really empty: 1 pc≈ 2 × 105 au! So 1 pc≈
3 × 1016 cm.

As shown in Fig. 1 the parsec is observationally defined via trigonometric
parallax, which is how astronomers measure the distance to the nearest stars.
The Earth’s orbit has a diameter of 2 au, so over half a year the Earth moves by
that amount and an object at distance d will appear to shift position slightly
by an angle 2θ. Then we have

(10) tan θ =
1 au

d
.

d 

Earth’s 
orbit

1
A

U

θ

Figure 1: Trigonometric (parallax) distance measurements use the Earth’s or-
bit to measure the changing angular position of distant objects. If the angular
movement θ (parallax) is measured in arcsec, then the distance d will be mea-
sured in parsecs (pc).
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Since θ is very small (try calculating a few examples!) when we meaure it in
radians we can approximate tan θ ≈ θ, so we get

(11) d = 1 AU/θ

or more conveniently

(12)
d

pc
=

1 arcsec
θ

.

The name parsec comes from the distance to an object with a PARallax of
one arcSEC. It is also (by coincidence) roughly the average distance between
stars in the Solar neighborhood. For example, α Centauri (the nearest star
system) is 1.3 pc away. To the center of our Milky Way galaxy, though, is
roughly 8,000 pc (8 kpc), and to the next-nearest galaxy of reasonable size is
620 kpc! Space is big.

2.2 Cosmic Distance Ladder

Distance is a key concept in astrophysics, and until recently often one of the
least-precisely-known quantities we can measure. (Since ∼2015 this has be-
gun to change somewhat thanks to ESA’s Gaia mission, which is measuring
trigonometric parallax for billions of objects with sub-milliarcsec precision –
i.e., precision of < 10−3 arcsec.

The distance ladder refers to the bootstrapping of distance measurements,
from nearby stars to the furthest edges of the observable universe. It’s a ‘lad-
der’ because each technique only has a limited range of applicability, as de-
scribed below. Note that inside the Solar System we can just throw EM waves
at something and wait for them to bounce back: the round-trip light travel
time gives us the distance. This includes planetary radar, spacecraft commu-
nication, laser-ranging to the moon, and other examples; this isn’t usually
considered part of the distance ladder.

Parallax, already mentioned, is the first rung outside the Solar system. As
noted this is being measured by Gaia for ∼1 billion stars across ∼half of the
Galaxy. A revolution is underway!

Standard candles are objects with known intrinsic brightness (i.e., lumi-
nosity). If we know how bright something is, then we also know its absolute
magnitude. By Eq. 3, it’s easy to calculate its distance. There are relatively few
truly standard candles, but a larger array of objects are standardizable: us-
ing other information we can correct for intrinsic variations between different
objects. Some examples include:

• Cepheid variables: giant pulsating stars, whose pulsation period corre-
lateds with luminosity.

• Type Ia Supernovae: one form of exploding stars (probably white dwarf)

• Distant Galaxies: it turns out that when we measure the rotation speed
vrot of various galaxies, we often find Lgal ∝ v2

rot: so measuring vrot gives
us the galaxy’s intrinsic brightness.

14



2.2. Cosmic Distance Ladder

Hubble’s Law describes the expansion of the universe as measured by
observations of very distant galaxies. Since the universe is expanding at a
nearly-constant rate (more on that later on!), distant galaxies appear to be
speeding away from us at a velocity v ∝ d. So measuring v (a different v
than vrot, mind) gives us the distance. (Note that this doesn’t work for the
nearest galaxies, like Andromeda, which is moving toward us due to gravity
dominating over cosmic expansion).
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3 Stars: A Basic Overview

Stars are “balls of gas burning billions of miles away.” Most of astrophysics
that we will study in this class relates to star: observing them, making mod-
els to understand their interior processes, and studying their dead remnants,
natal gas clouds, or stellar clusters with hundreds to trillions of members.

3.1 Types of Observations

The two main ways we observe stars (or almost anything else) are photometry
and spectroscopy. To understand either of these, we first need to understand
the spectra of stars: how much light they emit at different wavelengths. If
you disperse light from the Sun or a hot incandescent bulk through a prism,
you see a rainbow: light from shorter-wavelength blue/violet out to longer-
wavelength orange/red. If you disperse light from a red LED or a laser, you
would see that all of their light comes out at just a tiny range of wavelengths
— essentially just a single color rather than a wide range (we call such single-
colored light monochromatic).

For the dispersed Sunlight, we see the rainbow because our eyes are only
sensitive to wavelengths from roughly 400–650 nm. But if we had panchro-
matic eyes we would see that the Sun (and all stars) emits lights over a broad
range of wavelengths. Fig. 4 shows the amount of light coming from several
different types of stars, indicating that considerable amounts of light are being
emitted at invisible wavelengths.

Spectroscopy

Spectroscopy is the making of measurements such as those shown in Fig. 4,
i.e. how much light do we see at each particular wavelength. Spectra are ob-
tained by dispersing light through an optical element such as a prism, diffrac-
tion grating, or similar devices.

Each particular spectrum has its own characteristic spectral resolution R,
which describes how well very narrow features in the spectrum can be re-
solved. Spectral resolution is typically defined as R = λ/Δλ, where Δlambda
is the width of the narrowest spectral feature that can be measured. If R is
very low (say, < 100) then all but the broadest features are ‘smoothed over’
and washed out. Fig. 4 has R of a few thousand and many spectral fea-
tures are visible in the spectrum. Typical spectrographic instruments will have
R = 103 − 104, but some can go higher (or lower).

By measuring the location (i.e., the wavelength) of particular lines in an ob-
ject’s spectrum, we can learn something about what the object is made of, what
temperature it is, and (through the Doppler shift, Eq. 5) how fast the object
is moving toward us or away from us. E.g. the spectral line seen at 0.6563µm
is the well-known Hα electronic transition line. Seeing it clearly indicates that
hydrogen is in a star; unfortunately (for us), the lack of an elemental line (as
in the M0V spectrum shown, which lacks Hα) may or may not indicate that
that particular element is absent in the star.
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Photometry

Photometry is the measurement of average brightness (usually very broad)
spectral ranges. It often corresponds to (though is rarely described as) ultra-
low-spectral resolution; a typical photometric bandpass would have Δλ/λ ∼
20%. The common V (for visual) bandpass spans roughly 500–570 nm; many
standard photometric bands (such as V) have single-letter names, and some of
these are indicated on the OoMA handout and in the bottom of Fig. 4. If one
measured the photometry of the stars in that figure, the measurements would
essentially average the spectra down into just five points (one per indicated
bandpass).

So obviously photometry is a cruder tool than spectroscopy: you typically
wouldn’t bet the farm that a star showed an Hα line (or not) juts based on
photometry alone. On the other hand, astronomical targets are much fainter
than the Sun and accurately measuring their faint, dispersed spectra can of-
ten be challenging; in contrast, it’s comparatively easy to measure an object’s

U      B         V        R                                 I

Figure 2: Optical-wavelength spectra of main-sequence stars across a range of
spectral types. Wavelength is plotted in µm (10−6 m), so the range plotted cor-
responds to 300–1100 nm. The Sun is a G2V star, and so would be somewhere
between the G0V and G5V spectra shown. Shown at bottom are the approxi-
mate spectral ranges of some common optical-wavelength photometric bands.
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3. Stars: A Basic Overview

photometric properties. So much of early astronomy was built on photometry,
with spectroscopy coming later.

The main way that photometry is used is via measurements of apparent
magnitudes in the various photometric bandpasses. When one talks of a star’s
absolute or apparent magnitude without other reference, the bolometric mea-
surement is typically meant — i.e., a measurement of the star’s total lumi-
nosity integrated over all wavelengths. But one can also speak of a V-band
or R-band magnitude; in this case it is assumed than an apparent magnitude
is being referred to (unless otherwise specified). The hot A0V star Vega has
an apparent magnitude of roughly zero in all optical-wavelength bandpasses;
that is, B ≈ V ≈ R ≈ 0 (and so forth). Again, the classic astronomer’s website
for learning the magnitudes, coordinates, and many other details of a given
star is SIMBAD3.

3.2 Basic Properties of Stars

As we will see later in the course, it typically takes just three parameters to
describe the most salient aspects of a star. But just like constructing a coor-
dinate system (Cartesian? spherical? cylindrical?) there are multiple ways to
choose your fundamental stellar parameters – and any can be converted into
the others (with greater or lesser degree of accuracy).

The intrinsic stellar parameters most commonly used are mass M, radius
R, and either luminosity L or the effective temperature Teff. This last quantity
is something like the average temperature in the outer layers of the star, and
it is defined as

(13) Teff =

�
L

4πσSBR2

�1/4

where σSB is the Stefan-Boltzmann constant. As often as we can, we want
to avoid having to remember complicated numbers like σSB – instead, as-
tronomers like to put things in terms of other more familiar quantities. For
stars, nothing is more familiar than the Sun. So instead we can rewrite Eq. 13
as

(14)
Teff,∗
Teff,�

=

�
L∗
L�

�
R�
R∗

�2
�1/4

.

Both of the above expressions are just rearrangements of a fundamental rela-
tion we will touch on soon, namely

(15) L = 4πσSBT4
effR

2.

An alternative set of parameters often used in the study of stellar evolu-
tion (the birth, growth, and death of stars) would be the star’s mass, age, and
the amount of heavier-than-helium elements in the star. Since most of the uni-
verse (and stars) are made of H and He, astronomers call all elements heavier

3http://simbad.u-strasbg.fr/simbad/sim-fid
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than He metals. Thus the relative enhancement level of these heavier elements
is typically called metallicity (and is reported logarithmically).

If one had to pick just two key parameters, they would likely be M and
either Teff or age.

The typical range of properties for stars is:

• Mass: From as low as 0.08 M� to as high as around ∼ 100M�.

• Teff: From as low as about 2400 K to > 30, 000 K. Many cooler objects
exist; these include planets as well as brown dwarfs (objects with masses
and temperatures between stars and planets).

• Radius: From as small as 0.08 R� (smaller than Jupiter!) to as large as
∼ 1000R� (much larger than the Earth’s orbit around the Sun).

3.3 Classification

Classification is a key step toward understanding any new class of objects.
When modern astronomy began, classification of the stars was a key goal —
also an elusive one, until the physical processes became better understood.
We’re now going to begin to peel back the onion that is a Star. And the first
step in peeling an onion is to look at it from the outside.

One of the first successful frameworks used photometry measurements
of stellar flux density at different colors. Assuming again that stellar spec-
tra are approximately blackbodies, the Planck function shows that we should
see the hotter stars have bluer colors and be intrinsically brighter. This led to
the Hertzsprung-Russell diagram (HR diagram), which plots absolute mag-
nitude against color – we’ll see the HR diagram again when we discuss stellar
evolution.

It’s fair to say that spectroscopy is one of our key tools for learning about
astronomical objects, including stars. Fig. 4 shows a sequence of stars arranged
from hot to cool: one can easily see the Wien peak shift with temperature,
although none of the stars are perfect blackbodies. Other features come and
go, determined (as we will see) mainly by stellar temperature but also surface
gravity (or equivalently, surface pressure).

Table 1: Stellar spectral types.
SpT Teff Spectral features
O > 3 × 104 Ionized He or Si; no H (or only very weak)
B 104 − 3 × 104 H Balmer lines, neutral He lines
A 7500 − 104 Strong H lines
F 6000 − 7500 H Balmer, first metal lines appear (Ca)
G 5200 − 6000 Fading H lines, increasing metal lines
K 3700 − 5200 Strong Ca and other metals, hydride molecules appear
M 2400 − 3700 Molecular bands rapidly strengthen: hydrides, TiO, H2O
L 1400 − 2400 A melange of atomic and molecular bands; dust appears
T ∼ 400 − 1400 CH4 strengthens, dust clears
Y � 400 NH3 strengthens
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Through decades of refinement, spectra are now classified using Morgan-
Keenan spectral types. These include a letter to indicate the approximate
temperature, an Arabic numeral to refine the temperature, and a roman nu-
meral to indicate the star’s luminosity. The order of letters seems disjointed
because stars were classified before the underlying physical causes were well-
understood. The temperature sequence is OBAFGKMLTY, where the last three
typically apply to brown dwarfs (intermediate in mass between planets and
stars) and the rest apply to stars. Table 3.3 briefly describes each of the alpha-
betic spectral types. Additional resolution is added to the system through the
use of numbers 0–9, so that F9–G0–G1 is a sequence of steadily decreasing
Teff. Finally, the Roman numerals described in Table 2 indicate the luminosity
class, which typically correlates with the stellar radius (and inversely with the
surface gravity).

Table 2: Stellar luminosity classes.
Lum name examples

VI subdwarf Kapteyn’s Star (M1VI)
V dwarf Sun (G2V), Vega (A0V)
IV subgiant Procyon (F5IV)
III giant Arcturus (K1III)
II bright giant
I supergiant Rigel (B8Ia), Betelgeuse (M1Ia)
0 hypergiant η Carinae, Pistol Star
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4 Temperature, Luminosity, and Energy

Blackbody Emission

The stellar spectra plotted in Fig. are distinct but qualitatively similar in some
respects. For example, if one squints at them to blur out the details of the var-
ious spectral absorption features, all the stellar spectra start out fairly faint at
short wavelengths, rise to a maximum brightness at some intermediate wave-
length, and then fade again toward longer wavelengths. This behavior is char-
acteristic of a blackbody emission spectrum. Stars are not perfect blackbodies
(they have spectral features, after all) but they are often reasonably close.

The particular shape of a blackbody spectrum is given by the Planck black-
body function

(16) Bν(T) =
2hν3

c2
1

ehν/kBT − 1

is of critical importance in astrophysics. The Planck function tells how bright
an object with temperature T is as a function of frequency ν. Note that the
Planck function can also be written in terms of wavelength λ, but you can’t
just replace the ν’s in Eq. 16 with λ’s: instead one must write the identity
λBλ = νBν and calculate Bλ(T) from there.

It’s worth plotting B(T) for a range of temperatures to see how the curve
behaves, as shown in Fig. 3. One interesting result is that the wavelength of
maximal intensity turns out to scale linearly with T. This so-called Wien Peak
is approximately

(17) λmaxT ≈ 3000µm K

So radiation from a human body peaks at roughly 10µm in the mid-infrared,
while that from a 6000 K, roughly Sun-like star peaks at 0.5µm = 500 nm —
right in the response range of the human eye.

Another important correlation is the link between a blackbody’s luminos-
ity L and its temperature T. For any specific intensity Iν, the bolometric flux
F is given by Eqs. 92 and 93. When Iν = Bν(T), the Stefan-Boltzmann Law
directly follows:

(18) F = σSBT4

where σSB, the Stefan-Boltzmann constant, is

(19) σSB =
2π5k4

B
15c2h3

(or ∼ 5.67 × 10−8 W m−2 K−4).
Assuming isotropic emission (i.e., that the star shines equally brightly in

all directions), the luminosity of a sphere with radius R and temperature T is

(20) L = 4πR2F = 4πσSBR2T4
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4. Temperature, Luminosity, and Energy

.
If we assume that the Sun is a blackbody with R� ≈ 7 × 108 m and T ≈

6000 K, then we would calculate

L� ≈ 4 × 3 × (6 × 10−8)× (7 × 108)2 × (6 × 103)4(21)

= 72 × 10−8 × (50 × 1016)× (1000 × 1012)(22)

= 3600 × 1023 W(23)

which is surprisingly close to the IAU definition of L� = 3.828 × 1026 W.
Soon we will discuss the detailed structure of stars. Again, their spectra

(Fig. 4) show that they are not perfect blackbodies, but they are often pretty
close. This leads to the common definition of an effective temperature linked
to a star’s size and luminosity by the Stefan-Boltzmann law, as shown by
rearranging Eq. 20 to find Eq. 13. In other words, the effective temperature is
the temperature of a blackbody with the same size and luminosity of the star.

4.1 Units of Luminosity, Flux, and Blackbody Emission

An important note on the units of these various quantities. Luminosity is the
quantity that should be most familiar to you: this is just a power (energy per
time) and measured in W=J s−1. Specifically, the luminosity is the total power
emitted by an object integrated over all wavelengths (or frequencies), from
X-rays to radio waves.

We will also often talk about flux, which is the amount of power passing
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Figure 3: Blackbody spectra Bλ(T) for a range of temperatures T. The temper-
atures used here correspond roughly to the range of Teff spanned by the stars
shown in Fig. 4. The circular points indicate the Wien peak of each blackbody.

22



4.1. Units of Luminosity, Flux, and Blackbody Emission

through some area. If you know the luminosity of an object, the flux we mea-
sure from it is just the power spread out over some large surface area. For a
star or similar object that radiates equally in all directions, the radiation goes
out spherically and so the flux at some distance r is just

(24) F =
L

4πr2 .

The SI units of flux are W m−2. One common example is the so-called solar
constant (the flux incident on the Earth from the Sun). This is approximately

(25) F⊕ =
L�

4π(1 au)2 ≈ 4 × 1026

12 × (1.5 × 1011)
2 ≈ 104

6
W m−2.

A more precise value is about 1400 W m−2; this is a critical value for modeling
weather, environmental behavior, and solar power generation.

As for the Planck function, it is measured in neither luminosity nor flux;
instead its units are something called specific intensity that we will come back
to later.
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5. Energy Sources

5 Energy Sources

Most objects we will consider in this class are powered by one of a few key
mechanisms: nuclear fusion or fission, and the release of gravitational poten-
tial energy.

5.1 Fusion and Fission

Nuclear fusion and fission transmute an atom from one element to another.
The names are similar but the concepts are opposite: fusion combines two
atoms or their nuclei (e.g., H or He) to form one atom of a heavier element;
fission splits one large nucleus (e.g. U or Pu) into two or more smaller parti-
cles. Both can release energy under the right circumstances

Both of these mechanisms are different avenues for liberating the mass
energy inherent in all matter. Not to belabor the point, but

(26) E = mc2.

For individual particles we often measure these energies in units of electron-
volts (or eV), with 1 J ≈ 6 × 1018 eV. The two most-used mass energies are
those of the electron and proton, where me = 511 keV and mp = 938 MeV.
These energies are both much greater than that carried by a single photon
(whose energy is E = hν); a handy rule of thumb for photon energies is that

(27) Eγ ≈ 1.2 eV
λ

,

so visible photons have an energy of about 2 eV each.

Fusion

Fusion is the most important energy source in stars, and in these cases fu-
sion involves fairly low-mass atoms coming together. An example of a fusion
reaction might be

(28) 2
1H +3

1 H →4
2 He + n + ΔE

that releases an amount of energy ΔE. This extra energy is present because
the masses of the input hydrogen isotopes slightly outweigh that of the helium
produced:

Δm = min − mout(29)

= (2.014 amu + 3.016 amu)− (4.003 amu + 1.009 amu)(30)

= 0.018 amu.(31)

One atomic mass unit (amu) has a mass-energy of 931 MeV, so our fusion
reaction above releases (1.8%)(931 MeV) ≈ 16 MeV. Compared to the input
mass-energy of ∼ 5 × 931 ∼ 4600 MeV, that means our reaction has a mass-
energy conversion efficiency of about 0.3%.
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5.2. Gravitational Energy

Most stars are mostly H, and the primary fusion source turns out to be the
fusion of simple hydrogen nuclei (1

1H) into helium nuclei (4
2He, i.e., α parti-

cles). A very useful rule of thumb is that the conversion of H into He releases
0.7%mc2.

Fission

In contrast to fusion, fission involves much heavier atoms. Fission is also less
efficient than fusion, but still a potent source of energy. An classic fission
raction is

(32) 235
92 U → 231

90 Th + 4
2He + ΔE.

In this case the change in mass is just Δm = 0.005 amu, corresponding to an
energy release of about 4.5 MeV. Not too much less than was released in our
fusion reaction above, but the input mass was much greater (∼235 mu) and
so the efficiency is only 0.005/235∼ 2 × 10−5 — much less efficient than the
conversion of mass energy in fusion!

5.2 Gravitational Energy

Another common source of energy we will often focus on is gravitational
potential energy. Recall that for two point masses separated by r, the potential
energy of the system is

(33) UG = −G
m1m2

r
.

This is the energy gained as the two objects are brought close to each other
(the gravitational force pulls along the direction of motion, so negative work
is done). So UG of the Earth − Moon system is

UG,E−M ∼ (− 2
3 × 10−10) (6×1024)(6×1022)

3×108 J(34)

∼ 8 × 1028 J.(35)

Massive, astronomical objects have their own (quite considerable) self-
gravity, so even a single object also has its own gravitational potential energy.
For a sphere of uniform density, this can be shown to be

(36) UG,sphere = −3
5

GM2

R
.

Although few objects truly have uniform densities, Eq. 36 is often a reasonable
first approximation. It also means that if an object changes size (expands or
contracts), its gravitational potential energy will change. Since

(37)
dU
dR

∝ +1/R2,

as R decreases energy is released. This gravitational energy source will be
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5. Energy Sources

important in a number of astrophysical contexts.

26



6 The Two-Body Problem and Kepler’s Laws

Much of what we will discuss in this class involves orbiting objects: a moon
around a planet, or several planets around their star, thousands of stars in a
cluster, or billions in a galaxy. The first consideration of all these issues in-
volves the so-called two-body problem, when two objects orbit each other
due to their gravitational attraction. Observations of such systems are espe-
cially powerful because (as we will see) certain quantities — e.g. masses, radii,
orbital periods — can be measured extremely precisely. For example, binary
pulsars (two dead neutron stars orbiting each other) may have their masses
measured with a precision of 10−3M� (∼ 0.1%).

Our goal in the discussion below is to work through the gravitational two-
body problem with an eye on features that are observationally testable, and on
features specific to the 1/r2 nature of gravity. In the real world many “details”
push us away from exact 1/r2 — e.g. physical sizes, non-spherical shapes, and
general relativity.

6.1 Kepler’s Laws

To set the stage, recall from introductory physics Kepler’s three laws of orbital
motion (not to be confused with Asimov’s Three Laws of Robotics):

1. Kepler’s First Law: objects orbit along elliptical trajectories, as shown in
Fig. 4. The most relevant quantity here is the semimajor axis a, which
will come up again and again. The eccentricity e is also important: if
e = 0, the orbit is circular and r(φ) = a always. However, most orbits are
at least slightly eccentric and so in general

(38) r(φ) =
a
�
1 − e2�

1 + e cos φ
.

2. Kepler’s Second Law: In a given time interval dt an object’s orbit always
sweeps out the same area dA across its orbital ellipse. That is, dA/dt is

e a

focus

a

r(semimajor axis) φ

b

Figure 4: Elliptical trajectory of a two-body orbiting system. Important quan-
tities are labeled, including the semimajor axis a, the orbital eccentricity e, and
the polar coordinates r and φ as measured from the ellipse’s focus.
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6. The Two-Body Problem and Kepler’s Laws

constant; this will turn out to be

(39)
dA
dt

=
1
2

r2 dφ

dt
.

3. Kepler’s Third Law: The most useful of all Kepler’s Laws in many sit-
uations we will encounter. This relates a, the orbital period P, and the
total mass Mtot of the orbiting bodies, as a3/P2 equal to a constant. You
may have seen this before as some variation on:

(40) P2 =

�
4π2

GM

�
a3

6.2 Deriving Kepler’s Laws

Our goal in what follows is to rigorously derive Kepler’s Laws and so under-
stand how we can describe the positions and velocities of objects orbiting in
a two-body arrangement. Initially this may seem daunting: since in 3D space
each object has three position coordinates and three velocity components, we
have twelve degrees of freedom that might have to be explained. We need to
reduce this number to make things tractable!

Kepler’s 2nd Law

First, we can reduce the dimensionality by half by recognizing that both ob-
jects will orbit around their common center of mass (see Fig. 5). Whatever
arbitrary origin we choose for our coordinate system (such that our objects
have 3D positions �r1 and �r2), the position �R of the center of mass in this refer-
ence frame will be

(41) �R =
m1�r1 + m2�r2

m1 + m2
.

position vector from one to the other will always be

(42) �r = �r2 − �r1.

Remember from introductory physics that if there are no external forces on
the system, then the center of mass experiences no accelerations:�̈R = 0. And
since physics is the same in all inertial reference frames, we have freedom to
choose the ‘easy’ inertial reference frame in which�̇R = 0 too – so the position
of the center of mass never changes. Since physics is also the same in all
locations, we can again pick the ‘easy’ reference frame in which �R = 0 too.

So the center of mass is at the origin now, and since it isn’t moving and
isn’t accelerating it will always be at the origin. From Eq. 41, this means that

(43) m1�r1 + m2�r2 = 0.
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6.2. Deriving Kepler’s Laws

origin
(arbitrary position)

m
1

m
2

R
r
1

r
2

r
center
of mass

Figure 5: Coordinate system for two masses m1 and m2 separated by a distance
r. Both objects will orbit around their common center-of-mass; in this case,
m1 > m2 and so the center of mass is closer to m1.

From Fig. 5 the position of one object relative to the other is just

(44) �r = �r2 − �r1.

Combining Eqs. 43 and 44 shows that both positions �r1 and �r2 are proportional
to each other and also to the difference vector�r:

(45) �r2 =
�r

1 + m2/m1

and

(46) �r1 = −m2

m1
�r2.

This means that in terms of the number of unknown quantities, we’ve
reduced the two-body problem to an effective one-body problem with ‘only’
one set of unknown position and velocity coordinates.

We can go further: since gravity is a radially-acting force, �FG � �r. This
means that torque will be zero (since �τ = �r × �F), and thus the angular mo-
mentum�L =�r ×�p of the system will be constant in magnitude and direction:
thus the orbit must be constrained to a (2D) plane, and so we’re justified in
using just r and φ to describe the orbit.

The area dA swept out by the orbit in a time interval dt is given by

dA = 1
2

����r × �dr
���

= 1
2 |�r ×�vdt|

= dt
2m |�r × m�v|

= 1
2

L
m dt = constant.
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6. The Two-Body Problem and Kepler’s Laws

So an equal area is swept out in any equal time interval – that’s Kepler’s
Second Law.

One open question in the derivation immediately above is what mass we
should use for m — since in fact we have two masses orbiting each other,
m1 and m2. It turns out that this should be written in terms of the so-called
reduced mass µ of the two-body system, where

(47) µ ≡ m1m2

m1 + m2

and so

(48)
dA
dt

=
1
2

L
µ
= constant.

Kepler’s 3rd Law

Deriving this law involves rather more than we want to deal with in this
class, but we can get close with some fairly basic approximations. Consider
an object of mass m2 in a simple, circular orbit with around a larger mass
m1 (we’re neglecting that actually both objects orbit around their common
center of mass). The orbit has semimajor axis a, which is also the (constant)
separation r between the objects.

By Newton’s first law, we must haveFexternal = mar where (for uniform
circular motion) ar is the centripetal acceleration (not to be confused with a,
the semimajor axis). So for a gravitational orbit, we have

(49)
Gm1

m2
a2 =

m2v2
2

a2 .

The orbital velocity is related to the orbital period by v = 2πa/P. Plugging
that in for v and rearranging, we find the almost-correct form:

P2 Gm1

4π2 = a3.

This is not quite right because we neglected the movement of the larger m1
around the common center of mass. This isn’t a big effect if m2 is relatively
small; a full derivation would show us that we should be using the total mass
of the system, Mtot = m1 + m2. This gives us the “physicists’s version” of
Kepler’s Third Law:

(50) P2 GMtot

4π2 = a3.

This isn’t too bad, but we can make it even easier to use in many situations.
We know that the Earth takes one year to orbit the Sun at a distance of 1 au,
and that the total mass of the Earth-Sun system is M� + M⊕ ≈ M�. This
means we can turn Eq. 50 into a set of ratios for the “astronomer’s version” of
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Kepler’s Third Law:

(51)
�

P
1 yr

�2 � Mtot

M�

�
=

� a
1 au

�3

Either Eq. 50 or Eq. 51 let astronomers calculate an object’s mass merely by
observing its orbital motion (i.e., a and P) — and either expression will give
the correct answer when applied correctly.

6.3 Introducing Energy Diagrams

Energy Diagrams, or potential energy plots, are useful tools that we will use in
a variety of situations in this class. Their main benefit is to tell us when various
parameters are permitted (or prohibited) from taking on certain values due to
the energy considerations of the system. These are most easily employed when
we just have a single variable (e.g., energy is only a function of x), though they
can be used in other situations too.

The steps are fairly straightforward:

1. Write down an expression for the potential energy U in your system.

2. Plot U vs. your dependent spatial variable (e.g., U(x) vs. x).

3. Assume some amount of total mechanical energy (i.e., the sum of U and
kinetic energy K).

4. Overplot a horizontal line indicating the total Emech of the system.

5. Consider your plot and gain insight.

The insights gained should be the following:

• Forbidden regions: for any areas on the plot where U > Emech, this
would imply K < 0 (which is impossible). Thus your system will never
be located at these regions!

• Permitted regions: the opposite of forbidden regions, wherever U ≤
Emech. The system could potentially be located anywhere in these re-
gions. There could be one or multiple permitted regions, and they need
not all be contiguous.

• Kinetic Energy: Since K = Emech − U, the difference between the hori-
zontal Emech and more complicated U curves gives the amount of kinetic
energy at that position – and thus also how fast the system is moving.

• Turning points: Wherever U = Emech exactly, the object has zero velocity.
These are the points where the object would turn around if it had been
in the adjacent Permitted Region.

Fig. 6 gives an example for a simple harmonic oscillator with U(x) =
1/2kx2, with some nonzero amount of mechanical energy Emech. At the in-
dicated position x1, there is some nonzero kinetic energy: so if the oscillator
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6. The Two-Body Problem and Kepler’s Laws

Figure 6: Energy diagram for the case of a simple harmonic oscillator, U(x) =
1/2kx2, with some nonzero amount of mechanical energy Emech.

were located at x1, it would be moving – but more slowly than if it were at
x = 0, since Emech − U(x) is less at x1 than at x = 0. Regions with very large
x are forbidden; this should make intuitive sense, since if you start a spring
bouncing you don’t expect it to stretch out to infinity all of a sudden.

6.4 Energy of the Two-Body System

In any system, the total mechanical energy is just EmecH = U + K. In the
two-body system in particular, our dependent variable is r and U(r) takes its
familiar form

(52) Ug(r) =
−Gm1m2

r
.

Our kinetic energy is slightly more complicated. On an elliptical orbit the
velocity �v is typically neither totally radial nor azimuthal; in general

�v = �vr + �vφ

=�̇r + φ̇�r.

So the total kinetic energy actually depends on r, inasmuch as

(53) K =
1
2

µṙ2 +
1
2

µr2φ̇2.

We can write the second part of this expression for K in terms of the an-
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6.4. Energy of the Two-Body System

UE4

E3

E2

E1

Figure 7: Energy diagram for the the two-body problem, showing the contri-
butions of both the centripetal and gravitational terms to the final effective
potential Ueff. Various permitted energy levels are indicated by E1, E2, etc.

gular momentum, which we determined earlier to be constant. We have

L = |�r × µ�v|
= µrv

= µr2φ̇.

So in our expression for K(r), φ̇2 = L2/µ2r4 and thus Eq. 53 becomes

(54) K =
1
2

µṙ2 +
L2

2µr2 .

Our expression for the total energy of the two-body system is then

(55) E =
1
2

µṙ2 +
L2

2µr2 − Gm1

m2
r,

and we typically combine the last two terms together into an effective poten-
tial Ueff.

Fig. 7 shows the final energy diagram for two-body problem (compare to
Fig. 6). In the extreme case that we have zero angular momentum, this means
that the full potential would be the dashed gravitational term: L = 0 means
that the objects are heading for a collision at r = 0. On the other hand, this
means that so long as L > 0 there is always a forbidden zone at small r. Just
because the Earth is gravitationally attracted to the Sun doesn’t mean that we
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6. The Two-Body Problem and Kepler’s Laws

can just fall into it!
For nonzero L, the red lines show various permitted energy levels. As we

know, a gravitationally bound system has negative total energy (Eq. 52). So
if a two-body system has Ueff > 0 (such as E1 in the figure) the system is
unbound: the objects can escape from each other away toward infinity. At the
other extreme, there is some minimum possible energy (labeled here as E4). At
this energy, only a single separation r is permitted: thus the distance between
the objects is always the same; they’re on a circular orbit. As energy is added
to a circular orbit, wider and wider ranges of r are accessible to the system
(e.g. E3 and E2: adding energy to a circular orbit increases its eccentricity.
When Ueff = 0 the elliptical orbit becomes an unclosed parabola, and for any
larger energy (e.g. E1) the orbit becomes hyperbolic.
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7 Binary Systems

Having dealt with the two-body problem, we’ll leave the three-body problem
to science fiction authors4 and begin an in-depth study of stars. Our foray into
Kepler’s laws and two-body systems was appropriate, because about 50% of
all stars are in binary (or higher-multiplicity) systems. With our fundamental
dynamical model, plus data, we get a lot of stellar information from binary
stars — that is, stars in two-star systems.

Note that there are increasing levels of stellar multiplicity: systems of three,
four, or even more stars all orbiting each other in a complicated dance. These
higher-order multiples are less common than binaries, and they are often ar-
ranged heirarchically: that is, a triple system will typically involve two stars
closely-orbiting each other with the third at a much wider separation. The
nearby α Centauri triple system (our closest stellar neighbors) is such a heirar-
chical multiple: the more massive stars α Cen A and α Cen B orbit each other
with a = 23 au, while the smaller, cooler, lower-mass Proxima Centauri (the
closest star to the Sun) orbits A & B at roughly a ≈ 8000 au.

Stars in binaries are best characterized by mass M, radius R, and luminos-
ity L. Note that an effective temperature Teff is often used in place of L (see
Eq. 13). An alternative set of parameters from the perspective of stellar evo-
lution would be M; heavy-element enhancement metallicity [Fe/H], reported
logarithmically; and age.

7.1 Empirical Facts about binaries

The distribution of stellar systems between singles, binaries, and higher-order
multiples is roughly 55%, 35%, and 10% (for details see Raghavan et al. 20105)
– so the average number of stars per system is something like 1.6.

Orbital periods range from < 1day to ∼ 1010 days (∼ 3 × 106 yr). Any
longer, and Galactic tides will disrupt the stable orbit (the Sun takes ∼ 200 Myr
to orbit the Milky Way). The periods of binary stars have a log-normal distri-
bution – that is, the distribution is roughly Gaussian in log(P). For Sun-like
stars, binaries are most common with log10(P/d) = 4.8 with a width of 2.3 dex
(Duquennoy & Mayor 19926) – that is, the most common orbital periods are
roughly 104.8±2.3 d.

There’s also a wide range of eccentricities, from nearly circular to highly
elliptical. For short periods, we see e ≈ 0. This is due to tidal circularization:
the stretching and squeezing of a 3D (non-pointlike) body by a companion’s
gravity ‘steals’ energy from the orbit, causing eccentric orbits to eventually
circularize. Stars and planets aren’t point-masses and aren’t perfect spheres;
tides represent the differential gradient of gravity across a physical object, and
they bleed off orbital energy while conserving angular momentum. It turns
out that this means e decreases as a consequence, as explained by the energy
diagram analysis presented in Sec. 6.4.

4See: https://en.wikipedia.org/wiki/The_Three-Body_Problem_(novel) .
5https://ui.adsabs.harvard.edu/abs/2010ApJS..190....1R/
6https://ui.adsabs.harvard.edu/abs/1991A%26A...248..485D/
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7. Binary Systems

7.2 Parameterization of Binary Orbits

As discussed before in Sec. 6.2, two bodies orbiting in 3D requires 12 param-
eters, three for each body’s position and velocity. Three of these map to the
3D position of the center of mass – we get these if we measure the binary’s
position on the sky and the distance to it. Three more map to the 3D velocity
of the center of mass – we get these if we can track the motion of the binary
through the Galaxy.

So we can translate any binary’s motion into its center-of-mass rest frame,
and we’re left with six numbers describing orbits (see Fig. 9):

• P – the orbital period

• a – semimajor axis

• e – orbital eccentricity

• I – orbital inclination relative to the plane of the sky

• Ω – the longitude of the ascending node

• ω – the argument of pericenter

The period gives the relevant timescale; the next two parameters give us
the shape of the ellipse; the last three describe the ellipse’s orientation (three
angles for 3D space, as you may have seen in classical mechanics).

7.3 Binary Observations

The best way to measure L comes from basic telescopic observations of the
apparent bolometric flux F (i.e., integrated over all wavelengths). Then we
have

(56) F =
L

4πd2

where ideally d is known from parallax.
But the most precise way to measure M and R almost always involve stel-

lar binaries (though asteroseismology can do very well, too). But if we can
observe enough parameters to reveal the Keplerian orbit, we can get masses
(and separation); if the stars also undergo eclipses, we also get sizes.

In general, how does this work? We have two stars with masses m1 > m2
orbiting their common center of mass on elliptical orbits. Kepler’s third law
says that

(57)
GM
a3 =

�
2π

P

�2

so if we can measure P and a we can get M. For any type of binary, we usually
want P � 104 days if we’re going to track the orbit in one astronomer’s career.

If the binary is nearby and we can directly see the elliptical motion of at
least one component, then we have an astrometric binary. If we know the
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Figure 8: Geometry of an orbit. The observer is looking down along the z axis,
so x and y point in the plane of the sky.

distance d, we can then directly determine a as well (or both a1 and a2 if
we see both components). The first known astrometric binary was the bright,
northern star Sirius – from its motion on the sky, astronomers first identified
its tiny, faint, but massive white dwarf companion, Sirius b.

More often, two objects in a binary are so close that we can’t separate the
light well enough to see their astrometric motion. In these cases, we obtain
spectra of the stars that let us measure the stars’ Doppler shifts, and so mea-
sure the velocity of one or both stars. If we can only measure the periodic
velocity shifts of one star (e.g. the other is too faint), then the spectroscopic
binary is an “SB1”. If we can measure the Doppler shifts of both stars, then
we have an “SB2”: we get the individual semimajor axes a1 and a2 of both
components, and we can get the individual masses from m1a1 = m2a2.

If we have an SB1, we measure the radial velocity of the visible star. As-
suming a circular orbit,

(58) vr1 =
2πa1 sin I

P
cos

�
2πt
P

�

where P and vr1 are the observed quantities. What good is a1 sin I? We know
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that a1 = (m2/M)a, so from Kepler’s Third Law we see that

(59)
�

2π

P

�2
=

Gm3
2

a3
1M2

Combining Eqs. 58 and 59, and throwing in an extra factor of sin3 I to each
side, we find

1
G

�
2π

P

�2
a3

a sin3 I =
1
G

v3
r1

(2π/P)
(60)

=
m3

2 sin3 I
M2(61)

where this last term is the spectroscopic “mass function” – a single number
built from observables that constrains the masses involved.

(62) fm =
m3

2 sin3 I
(m1 + m2)2

In the limit that m1 << m2 (e.g. a low-mass star or planet orbiting a more
massive star), then we have

(63) fm ≈ m2 sin3 I ≤ m2

Another way of writing this out in terms of the observed radial velocity semi-
amplitude K (see Lovis & Fischer 2010) is:

(64) K =
28.4 m s−1

(1 − e2)1/2
m2 sin I

MJup

�
m1 + m2

M�

�−2/3 � P
1 yr

�−1/3

Fig. 9 shows the situation if the stars are eclipsing. In this example one star

Figure 9: Geometry of an eclipse (top), and the observed light curve (bottom).

is substantially larger than the other; as the sizes become roughly equal (or as
the impact parameter b reaches the edge of the eclipsed star), the transit looks
less flat-bottomed and more and more V-shaped.
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If the orbits are roughly circular then the duration of the eclipse (T14) re-
lates directly to the system geometry:

(65) T14 ≈ 2R1
�

1 − (b/R1)2

v2

while the fractional change in flux when one star blocks the other just scales
as the fractional area, (R2/R1)

2.
There are a lot of details to be modeled here: the proper shape of the light

curve, a way to fit for the orbit’s eccentricity and orientation, also including
the flux contribution during eclipse from the secondary star. Many of these de-
tails are simplified when considering extrasolar planets that transit their host
stars: most of these have roughly circular orbits, and the planets contribute
negligible flux relative to the host star.

Eclipses and spectroscopy together are very powerful: visible eclipses typ-
ically mean I ≈ 90o, so the sin I degeneracy in the mass function drops out
and gives us an absolute mass. Less common is astrometry and spectroscopy
– the former also determines I; this is likely to become much more common
in the final Gaia data release (DR4, est. 2022).
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8 Exoplanets, Planets, and the Solar System

The preceding discussion about binary systems is a good jumping-off point
for an aside about planets within and beyond our Solar system.

The International Astronomical Union (IAU), the international organiza-
tion of professional astronomers, defined a planet in 2006 to be anything that:

• is in orbit around the Sun,

• has sufficient mass to assume hydrostatic equilibrium (a nearly round
shape), and

• has “cleared the neighborhood” around its orbit.

Note that by the first criterion, planets in the ‘legal’ sense of the term can
only be found within our own Solar system. This would come as quite a shock
to the many astronomers who study extrasolar planets (also known as exo-
planets) that orbit other stars. Luckily these researchers don’t treat this tech-
nical restriction too carefully, and so one frequently (and I think, accurately)
hears of “planets” in other solar systems.

8.1 The Solar System

8.2 Exoplanets
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9 Gravitational Waves

A subset of binary objects can be studied in an entirely different way than
astrometry, spectroscopy, and eclipses: this is through gravitational waves,
undulations in the fabric of spacetime itself caused by rapidly-orbiting, mas-
sive objects. For our description of that, I follow Choudhuri’s textbook, parts
of chapters 12 and 13. Note that in much of what follows, we skip details
about a number of different factors (e.g. “projection tensors”) that introduce
angular dependencies, and enforce certain rules that radiation must obey. For
a detailed treatment of all this, consult a modern gravitational wave textbook
(even Choudhuri doesn’t cover everything that follows, below).

Recall that in relativity we describe spacetime through the four-vector

xi = (x0, x1, x2, x3)(66)

= (ct, x, y, z)(67)

(note that those are indices, not exponents!). The special relativistic metric that
describes the geometry of spacetime is

ds2 =− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2(68)

=ηikdxidxk(69)

But this is only appropriate for special (not general) relativity – and we
definitely need GR to treat accelerating, inspiraling compact objects. For 8.901,
we’ll assume weak gravity and an only slightly modified form of gravity;
“first-order general relativity.” Then our new metric is

(70) gik = ηik + hik

where it’s still true that ds2 = gikdxidxk, and hik is the GR perturbation. For
ease of computation (see the textbook) we introduce a modified definition,

(71) h̄ik = hik −
1
2

ηikh

where here h is the trace (the sum of the elements on the main diagonal) of
hik.

Now recall that Newtonian gravity gives rise to the gravitational Poisson
equation

(72) ∇2Φ = 4πGρ

– this is the gravitational equivalent of Gauss’ Law in electromagnetism. The
GR equations above then lead to an equivalent expression in GR – the inho-
mogeneous wave equation,

(73) �2h̄ik = −16πG
c4 Tik
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9. Gravitational Waves

where �2 = −1 1
c2

∂2

∂t2 +∇2 is the 4D differential operator and Tik is the energy-
momentum tensor, describing the distribution of energy and momentum in
spacetime. This tensor is a key part of the Einstein Equation that describes
how mass-energy leads to the curvature of spacetime, which unfortunately we
don’t have time to fully cover in 8.901.

One can solve Eq. 73 using the Green’s function treatment found in almost
all textbooks on electromagnetism. The solution is that

(74) h̄ik(t,�r) =
4G
c4

�

S

Tik(t − |�r −�r�|/c,�r�)
|�r −�r�| d3r�

(where tr = t− |�r −�r�|/c is the ‘Retarded Time’; see Fig. 10 for the relevant ge-
ometry). This result implies that the effects of gravitation propagate outwards
at speed c, just as do the effects of electromagnetism.

Figure 10: General geometry for Eq. 74.

We can simplify Eq. 74 in several ways. First, assuming than an observer
is very far from the source implies |�r| >> |�r�| for all points in the source S.
Therefore,

(75)
1

|�r −�r�| ≈
1
r

If the mass distribution (the source S) is also relatively small, then

(76) t − |�r −�r�|/c ≈ t − r/c

. Finally, general relativity tells us that the timelike components of hik do not
radiate (see GR texts) – so we can neglect them in the analysis that follows.

Putting all this together, we have a simplified solution of Eq. 74, namely

(77) h̄ik =
4G
c4r

�

S

Tik(�r�, tR)d3r�

We can combine this with one more trick. The properties of the stress-energy
tensor (see text, again) turn out to prove that

(78)
�

S

Tik(�r�)d3r� =
1
2

d2

dt2

�

S

T00(�r�) · x�i x
�
kd3r�
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This is possibly the greatest help of all, since in the limit of a weak-gravity
source T00 = ρc2, where ρ is the combined density of mass and energy.

If we then define the quadrupole moment tensor as

(79) Iik =
�

S

ρ(�r�)x�i x
�
jd

3r�

then we have as a result

(80) hik =
2G
c4r

d2

dt2 Iik

which is the quadrupole formula for the gravitational wave amplitude.
What is this quadrupole moment tensor, Iik? We can use it when we treat

a binary’s motion as approximately Newtonian, and then use Iik to infer how
gravitational wave emission causes the orbit to change. If we have a circular
binary orbiting in the xy plane, with separation r and m1 at (x > 0, y = 0).
In the reduced description, we have a separation r, total mass M, reduced
mass µ = m1m2/M, and orbital frequency Ω =

√
GM/r3. This means that the

binary’s position in space is

(81) xi = r(cos Ωt, sin Ωt, 0)

Treating the masses as point particles, we have ρ = ρ1 + ρ2 where

(82) ρn = δ(x − xn)δ(y − yn)δ(z)

so the moment tensor becomes simply Iik = µxixk, or

Iik = µr2




cos2 Ωt sin Ωt cos Ωt 0
sin Ωt cos Ωt sin2 Ωt 0

0 0 0


(83)

As we will see below, this result implies that gravitational waves are emitted
at twice the orbital frequency.

9.1 Gravitational Radiation

Why gravitational waves? Eq. 73 above implies that in empty space, we must
have simply

(84) �2 ¯hlm = �2hlm = 0

This implies the existence of the aforementioned propagating gravitational
waves, in an analogous fashion to the implication of Maxwell’s Equations for
traveling electromagnetic waves. In particular, if we define the wave to be
traveling in the x3 direction then a plane gravitational wave has the form

(85) hlm = Almeik(ct−x3)
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(where i and k now have their usual wave meanings, rather than referring to
indices). It turns out that the Alm tensor can be written as simply

(86) Alm =




0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0




The implication of just two variables in Alm is that gravitational waves
have just two polarizations, “+” and “×”. This is why each LIGO and VIRGO
detector needs just two arms – one per polarization mode.

Just like EM waves, GW also carry energy. The Isaacson Tensor forms part
of the expression describing how much energy is being carried, namely:

(87)
dE

dAdt
=

1
32π

c3/G < ḣij ḣij >

This is meaningful only on distance scales of at least one wavelength, and
when integrated over a large sphere (and accounting for better-unmentioned
terms like the projection tensors), we have

(88)
dE
dt

=
1
5

G
c5 < ˙̇İ ij

˙̇İ ij >

which is the quadrupole formula for the energy carried by gravitational
waves.

9.2 Practical Effects

In practice, this means that the energy flux carried by a gravitational wave of
frequency f and amplitude h is

Fgw = 3 mW m−2
�

h
10−22

�2 � f
1 kHz

�2
(89)

In contrast, the Solar Constant is about 1.4× 106 mW m−2. But the full moon is
∼ 106× fainter than the sun, and gravitational waves carry energy comparable
to that!

For a single gravitational wave event of duration τ, the observed “strain”
(amplitude) h scales approximately as:

(90) h = 10−21
�

EGW
0.01M�c2

�1/2 � r
20 Mpc

�−1 � f
1 kHz

�−1 � τ

1 ms

�−1/2

With today’s LIGO strain sensitivity of < 10−22, this means they should be
sensitive to events out to at least the Virgo cluster (or further for stronger
signals).

And as a final aside, note that the first detection of the presence of grav-
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9.2. Practical Effects

itational waves came not from LIGO but from observations of binary neu-
tron stars. As the two massive objects rapidly orbit each other, gravitational
waves steadily sap energy from the system, causing the orbits to steadily de-
cay. When at least one of the neutron stars is a pulsar, this orbital decay can
be measured to high precision.
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10 Radiation

The number of objects directly detected via gravitational waves can be counted
on two hands and a toe (11 as of early 2019). In contrast, billions and bil-
lions of astronomical objects have been detected via electromagnetic radiation.
Throughout history and up to today, astronomy is almost completely depen-
dent on EM radiation, as photons and/or waves, to carry the information we
need to observatories on or near Earth.

To motivate us, let’s compare two spectra of similarly hot sources, shown
in Fig. 11.

Figure 11: Toy spectra of two hot sources, ∼ 104 K. Left: a nearly-blackbody
A0 star with a few absorption lines. Right: central regions of Orion Nebula,
showing only emission lines and no continuum.

In a sense we’re moving backward: we’ll deal later with how these pho-
tons are actually created. For now, our focus is on the radiative transfer from
source to observer. We want to develop the language to explain and describe
the difference between these spectra of two hot gas masses.

10.1 Radiation from Space

The light emitted from or passing through objects in space is almost the only
way that we have to probe the vast majority of the universe we live in. The
most distant object to which we have traveled and brought back samples,
besides the moon, is a single asteroid. Collecting solar wind gives us some
insight into the most tenuous outer layers of our nearby star, and meteorites
on earth provide insight into planets as far away as Mars, but these are the
only things from space that we can study in laboratories on earth. Beyond this,
we have sent unmanned missions to land on Venus, Mars, and asteroids and
comets. To study anything else in space we have to interpret the radiation we
get from that source. As a result, understanding the properties of radiation,
including the variables and quantities it depends on and how it behaves as it
moves through space, is then key to interpreting almost all of the fundamental
observations we make as astronomers.
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10.1. Radiation from Space

Energy

To begin to define the properties of radiation from astronomical objects, we
will start with the energy that we receive from an emitting source somewhere
in space. Consider a source of radiation in the vacuum of space (for familiarity,
you can think of the sun). At some point in space away from our source of
radiation we want to understand the amount of energy dE that is received
from this source. What is this energy proportional to?

dΩ

dEdA

θ

dν

dt

I0

Figure 12: Description of the energy detected at a location in space for a period
of time dt over an area dA arriving at an angle θ from an object with intensity
I0, an angular size dΩ, through a frequency range dν (in this case, only the
green light).

As shown in Figure 12, our source of radiation has an intensity I0 (we will
get come back to this in a moment) over an apparent angular size (solid angle)
of dΩ. Though it may give off radiation over a wide range of frequencies, as
is often the case in astronomy we only concern ourselves with the energy
emitted in a specific frequency range ν+dν (think of using a filter to restrict
the colors of light you see, or even just looking at something with your eyeball,
which only detects radiation in the visible range). At the location of detection,
the radiation passes through some area dA in space (an area perhaps like
a spot on the surface of Earth) at an angle θ away from the normal to that
surface. The last property of the radiation that we might want to consider is
that we are detecting it over a given window of time (and many astronomical
sources are time-variable). You might be wondering why the distance between
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10. Radiation

our detector and the source is not being mentioned yet: we will get to this.
Considering these variables, the amount of energy that we detect will be

proportional to the apparent angular size of our object, the range of frequen-
cies over which we are sensitive, the time over which we collect the radiation,
and the area over which we do this collection. The constant of proportionality
is the specific intensity of our source: I0. Technically, as this is the intensity
just over a limited frequency range, we will write this as I0,ν.

In equation form, we can write all of this as:

(91) dEν = I0,ν cosθ dA dΩ dν dt

Here, the cos θ dA term accounts for the fact that the area that matters is
actually the area “seen” from the emitting source. If the radiation is coming
straight down toward our unit of area dA, it “sees” an area equal to that of
the full dA (cos θ = 1). However, if the radiation comes in at a different angle
θ, then it “sees” our area dA as being tilted: as a result, the apparent area is
smaller (cos θ < 1). You can test this for yourself by thinking of the area dA
as a sheet of paper, and observing how its apparent size changes as you tilt it
toward or away from you.

Intensity

Looking at Equation 91, we can figure out the units that the specific intensity
must have: energy per time per frequency per area per solid angle. In SI units,
this would be W Hz−1 m−2 sr−1. Specific intensity is also sometimes referred
to as surface brightness, as this quantity refers to the brightness over a fixed
angular size on the source (in O/IR astronomy, surface brightness is measured
in magnitudes per square arcsec). Technically, the specific intensity is a 7-
dimensional quantity: it depends on position (3 space coordinates), direction
(two more coordinates), frequency (or wavelength), and time. As we’ll see
below, we can equivalently parameterize the radiation with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time.

Flux

The flux density from a source is defined as the total energy of radiation
received from all directions at a point in space, per unit area, per unit time,
per frequency. Given this definition, we can modify equation 91 to give the
flux density at a frequency ν:

(92) Fν =
�

Ω

dEν

dA dt dν
=

�

Ω

IνcosθdΩ

The total flux at all frequencies (the bolometric flux) is then:

(93) F =
�

ν

Fν dν
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10.2. Conservation of Specific Intensity

As expected the SI units of flux are W m−2; e.g., the aforementioned Solar
Constant (the flux incident on the Earth from the Sun) is roughly 1400 W m−2.

The last, related property that one should consider (particularly for spa-
tially well-defined objects like stars) is the Luminosity. The luminosity of a
source is the total energy emitted per unit time. The SI unit of luminosity is
just Watts. Luminosity can be determined from the flux of an object by inte-
grating over its entire surface:

(94) L =
�

F dA

As with flux, there is also an equivalent luminosity density, Lν, defined anal-
ogously to Eq. 93.

Having defined these quantities, we now ask how the flux you detect from
a source varies as you increase the distance to the source. Looking at Figure
13, we take the example of our happy sun and imagine two spherical shells
or bubbles around the sun: one at a distance R1, and one at a distance R2.
The amount of energy passing through each of these shells per unit time is
the same: in each case, it is equal to the luminosity of the sun, L�. However,
as R2 >R1, the surface area of the second shell is greater than the first shell.
Thus, the energy is spread thinner over this larger area, and the flux (which
by definition is the energy per unit area) must be smaller for the second shell.
Comparing the equations for surface area, we see that flux decreases propor-
tionally to 1/d2.

R2

R1

Figure 13: A depiction of the flux detected from our sun as a function of
distance from the sun. Imagining shells that fully enclose the sun, we know
that the energy passing through each shell per unit time must be the same
(equal to the total luminosity of the sun). As a result, the flux must be less in
the larger outer shell: reduced proportionally to 1/d2

10.2 Conservation of Specific Intensity

We have shown that the flux obeys an inverse square law with distance from
a source. How does the specific intensity change with distance? The specific
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intensity can be described as the flux divided by the angular size of the source,
or Iν ∝ Fν/ΔΩ. We have just shown that the flux decreases with distance,
proportional to 1/d2. What about the angular source size? It happens that the
source size also decreases with distance, proportional to 1/d2. As a result, the
specific intensity (just another name for surface brightness) is independent of
distance.

Let’s now consider in a bit more detail this idea that Iν is conserved in
empty space – this is a key property of radiative transfer. This means that in
the absence of any material (the least interesting case!) we have dIν/ds = 0,
where s measures the path length along the traveling ray. And we also know
from electrodynamics that a monochromatic plane wave in free space has a
single, constant frequency ν. Ultimately our goal will be to connect Iν to the
flow of energy dE – this will eventually come by linking the energy flow to
the number flow dN and the energy per photon,

(95) dE = dN(hν)

We mentioned above that Iν can be parameterized with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time. So Iν = Iν(�r,�p, t). For now we’ll neglect the dependence on t, assum-
ing a constant radiation field – so our radiation field fills a particular six-
dimensional phase space of�r and �p.

This means that the particle distribution N is proportional to the phase
space density f :

(96) dN = f (�r,�p)d3rd3 p

By Liouville’s Theorem, given a system of particles interacting with con-
servative forces, the phase space density f (�r,�p) is conserved along the flow of
particles; Fig. 14 shows a toy example in 2D (since 6D monitors and printers
aren’t yet mainstream).

Figure 14: Toy example of Liouville’s Theorem as applied to a 2D phase space
of (x, px). As the system evolves from t1 at left to t2 at right, the density in
phase space remains constant.

In our case, the particles relevant to Liouville are the photons in our ra-
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10.2. Conservation of Specific Intensity

Figure 15: Geometry of the incident radiation field on a small patch of area
dA.

diation field. Fig. 15 shows the relevant geometry. This converts Eq. 96 into

(97) dN = f (�r,�p)cdtdA cos θd3 p

As noted previously, �p encodes the radiation field’s direction and energy
(equivalent to frequency, and to linear momentum p) of the radiation field. So
we can expand d3 p around the propagation axis, such that

(98) d3 p = p2dpdΩ

This means we then have

(99) dN = f (�r,�p)cdtdA cos θp2dpdΩ

Finally recalling that p = hν/c, and throwing everything into the mix
along with Eq. 95, we have

(100) dE = (hν) f (�r,�p)cdtdA cos θ

�
hν

c

�2 � hdν

c

�
dΩ

We can combine this with Eq. 91 above, to show that specific intensity is di-
rectly proportional to the phase space density:

(101) Iν =
h4ν3

c2 f (�r,�p)

Therefore whenever phase space density is conserved, Iν/ν3 is conserved.
And since ν is constant in free space, Iν is conserved as well.
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10.3 Blackbody Radiation

For radiation in thermal equilibrium, the usual statistical mechanics references
show that the Bose-Einstein distribution function, applicable for photons, is:

(102) n =
1

ehν/kBT − 1

The phase space density is then

(103) f (�r,�p) =
2
h3 n

where the factor of two comes from two photon polarizations and h3 is the
elementary phase space volume. Combining Eqs. 101, 102, and 103 we find
that in empty space

(104) Iν =
2hν3

c2
1

ehν/kBT − 1
≡ Bν(T)

Where we have now defined Bν(T), the Planck blackbody function. The
Planck function says that the specific intensity (i.e., the surface brightness)
of an object with perfect emissivity depends only on its temperature, T.

Finally, let’s define a few related quantities for good measure:

Jν = specific mean intensity

(105)

=
1

4π

�
IνdΩ

(106)

= Bν(T)
(107)

uν = specific energy intensity

(108)

=
� Iν

c
dΩ

(109)

=
4π

c
Bν(T)

(110)
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Pν = specific radiation pressure

(111)

=
� Iν

c
cos2 θdΩ

(112)

=
4π

3c
Bν(T)

(113)

The last quantity in each of the above is of course only valid in empty
space, when Iν = Bν. Note also that the correlation Pν = uν/3 is valid when-
ever Iν is isotropic, regardless of whether we have a blackbody radiation.

10.4 Radiation, Luminosity, and Temperature

(See Chp. 4).
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11 Radiative Transfer

Radiation through empty space is what makes astronomy possible, but it isn’t
so interesting to study on its own. Radiative transfer, the effect on radiation
of its passage through matter, is where things really get going.

11.1 The Equation of Radiative Transfer

We can use the fact that the specific intensity does not change with distance to
begin deriving the radiative transfer equation. For light traveling in a vacuum
along a path length s, we say that the intensity is a constant. As a result,

(114)
dIν

ds
= 0 ( f or radiation traveling through a vacuum)

This case is illustrated in the first panel of Figure 16. However, space (par-
ticularly objects in space, like the atmospheres of stars) is not a vacuum ev-
erywhere. What about the case when there is some junk between our detector
and the source of radiation? This possibility is shown in the second panel of
Figure 16. One quickly sees that the intensity you detect will be less than it
was at the source. You can define an extinction coefficient αν for the space
junk, with units of extinction (or fractional depletion of intensity) per distance
(path length) traveled, or m−1 in SI units. For our purposes right now, we will
assume that this extinction is uniform and frequency-independent (but in real
life of course, it never is).

We also define

αν = nσν

(115)

= ρκν

(116)

Where n is the number density of absorbing particles and σν is their frequency-
dependent cross-section, while ρ is the standard mass density and κν is the

I0

s

dI
ds

=0

I0

s

dI
ds
=-αI

α

I0

s

dI
ds

= j -αI

α

 

j

Figure 16: The radiative transfer equation, for the progressively more compli-
cated situations of: (left) radiation traveling through a vacuum; (center) radia-
tion traveling through a purely absorbing medium; (right) radiation traveling
through an absorbing and emitting medium.
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11.1. The Equation of Radiative Transfer

frequency-dependent opacity. Now, our equation of radiative transfer has
been modified to be:

(117)
dIν

ds
= −αν Iν (when there is absorbing material between us and our source)

As is often the case when simplifying differential equations, we then find
it convenient to try to get rid of some of these pesky units by defining a
new unitless constant: τν, or optical depth. If αν is the fractional depletion of
intensity per path length, τν is just the fractional depletion. We then can define

(118) dτν = ανds

and re-write our equation of radiative transfer as:

(119)
dIν

dτ
= −Iν

Remembering our basic calculus, we see that this has a solution of the type

Iν(s) = Iν(0) exp


−

s�

0

dτν




(120)

= Iν(0)e−τν ( f or an optically thin source)
(121)

So, at an optical depth of unity (the point at which something begins to be
considered optically thick), your initial source intensity I0 has decreased by a
factor of e.

However, radiation traveling through a medium does not always result in
a net decrease. It is also possible for the radiation from our original source to
pass through a medium or substance that is not just absorbing the incident
radiation but is also emitting radiation of its own, adding to the initial radia-
tion field. To account for this, we define another coefficient: jν. This emissivity
coefficient has units of energy per time per volume per frequency per solid
angle. Note that these units (in SI: W m−3 Hz−1 sr−1) are slightly different
than the units of specific intensity. Including this coefficient in our radiative
transfer equation we have:

(122)
dIν

ds
= jν − αν Iν

or, putting it in terms of the dimensionless optical depth τ, we have:

(123)
dIν

dτν
=

jν
αν

− Iν
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After defining the so-called source function

(124) Sν =
jν
αν

we arrive at the final form of the radiative transfer equation:

(125)
dIν

dτν
= Sν − Iν

11.2 Solutions to the Radiative Transfer Equation

What is the solution of this equation? For now, we will again take the simplest
case and assume that the medium through which the radiation is passing is
uniform (i.e., Sν is constant). Given an initial specific intensity of Iν(s = 0) =
Iν,0, we obtain

(126) Iν = Iν,0e−τν + Sν

�
1 − e−τν

�
( f or constant source f unction)

What happens to this equation when τ is small? In this case, we haven’t
traveled very far through the medium and so should expect that absorption
or emission hasn’t had a strong effect. And indeed, in the limit that τν = 0 we
see that Iν = Iν,0.

What happens to this equation when τ becomes large? In this case, we’ve
traveled through a medium so optically thick that the radiation has “lost all
memory” of its initial conditions. Thus e−τν becomes negligible, and we arrive
at the result

(127) Iν = Sν ( f or an optically thick source)

So the only radiation that makes it out is from the emission of the medium
itself. What is this source function anyway? For a source in thermodynamic
equilibrium, any opaque (i.e., optically thick) medium is a “black body” and
so it turns out that Sν = Bν(T), the Planck blackbody function. For an optically-
thick source (say, a star like our sun) we can use Eq. 127 to then say that
Iν = Bν.

The equivalence that Iν = Sν = Bν gives us the ability to define key proper-
ties of stars – like their flux and luminosity – as a function of their temperature.
As described in the preceding chapter, using Eq. 92 and 93 we can integrate
the blackbody function to determine the flux of a star (or other blackbody) as
a function of temperature, the Stefan-Boltzmann law:

(128) F = σT4

Another classic result, the peak frequency (or wavelength) at which a star
(or other blackbody) radiates, based on its temperature, can be found by differ-
entiating the blackbody equation with respect to frequency (or wavelength).
The result must be found numerically, and the peak wavelength can be ex-
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pressed in Wien’s Law as

(129) λpeak =
2.898 × 10−3 m K

T

We can improve on Eq. 126 and build a formal, general solution to the
radiative transfer equation as follows. Starting with Eq. 125, we have

dIν

dτν
= Sν − Iν

(130)

dIν

dτν
eτν = Sνeτν − Iνeτν

(131)

d
dτν

(Iνeτν) = Sνeτν

(132)

We can integrate this last line to obtain the formal solution:

(133) Iν(τν) = Iν(0)e−τν +

τν�

0

Sν(τ
�
ν)e

(τ�ν−τν)dτ�
ν

As in our simpler approximations above, we see that the initial intensity Iν(0)
decays as the pathlength increases; at the same time we pick up an increasing
contribution from the source function Sν, integrated along the path. In practice
Sν can be fairly messy (i.e., when it isn’t the Planck function), and it can even
depend on Iν. Nonetheless Eq. 133 lends itself well to a numerical solution.

11.3 Kirchhoff’s Laws

We need to discuss one additional detail before getting started on stars and
nebulae: Kirchhoff’s Law for Thermal Emission. This states that a thermally
emitting object in equilibrium with its surrounding radiation field has Sν =
Bν(T).

Note that the above statement does not require that our object’s thermal ra-
diation is necessarily blackbody radiation. Whether or not that is true depends
on the interactions between photons and matter – which means it depends on
the optical depth τν.

Consider two lumps of matter, both at T. Object one is optically thick, i.e.
τν >> 1. In this case, Eq. 133 does indeed require that the emitted radiation
has the form Iν(τν) = Sν = Bν(T) — i.e., blackbody radiation emerges from
an optically thick object. This is mostly the case for a stellar spectrum, but not
quite (as we’ll see below).

First, let’s consider the other scenario in which our second object is opti-
cally thin, i.e. 0 < τν << 1. If our initial specific intensity Iν(0) = 0, then we
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have

Iν(τν) = 0 + Sν (1 − (1 − τν))
(134)

= τνBν(T)
(135)

Thus for an optically thin object, the emergent radiation will be blackbody
radiation, scaled down by our low (but nonzero) τν.

It’s important to remember that τν is frequency-dependent (hence the ν
subscript!) due to its dependence on the extinction coefficient αν. So most as-
tronomical objects represent a combination of the two cases discussed imme-
diately above. At frequencies where atoms, molecules, etc. absorb light most
strongly, αν will be higher than at other frequencies.

So in a simplistic model, assume we have a hot hydrogen gas cloud where
αν is zero everywhere except at the locations of H lines. The location of these
lines is given by the Rydberg formula,

(136)
1

λvac,1,2
= R

�
1
n2

1
− 1

n2
2

�

(where R = 1/(91.2 nm) is the Rydberg constant and n1 = 1, 2, 3, 4, 5, etc. for
the Lyman, Balmer, Paschen, and Brackett series, respectively).

In a thin gas cloud of temperature T, thickness s, and which is “backlit”
by a background of empty space (so Iν,0 ≈ 0), from Eq. 135 all we will see
is τνBν(T) = ανsBν(T) — so an emission-line spectrum which is zero away
from the lines and has strong emission at the locations of each line.

What about in a stellar atmosphere? A single stellar T (an isothermal at-
mosphere) will yield just a blackbody spectrum, regardless of the form of
αν. The simplest atmosphere yielding an interesting spectrum is sketched in
Fig. 17: an optically thick interior at temperature TH and a cooler, optically
thin outer layer at TC < TH .

Figure 17: The simplest two-layer stellar atmosphere: an optically thick interior
at temperature TH and a cooler, optically thin outer layer at TC < TH .

The hot region is optically thick, so we have Iν = Sν = Bν(TH) emitted
from the lower layer – again, regardless of the form of αν. The effect of the
upper, cooler layer which has small but nonzero τν is to slightly diminish the
contribution of the lower layer while adding a contribution from the cooler
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layer:

Iν = Iν(0)e−τν + Sν

�
1 − e−τν

�(137)

= Bν(TH)e−τν + Bν(TC)
�
1 − e−τν

�(138)

≈ Bν(TH)(1 − τν) + Bν(TC)τν

(139)

≈ Bν(TH)− τν (Bν(TH)− Bν(TC))
(140)

≈ Bν(TH)− ανs (Bν(TH)− Bν(TC))
(141)

So a stellar spectrum consists of two parts, roughly speaking. The first is
Bν(TH), the contribution from the blackbody at the base of the atmosphere
(the spectral continuum). Subtracted from this is a contribution wherever αν

is strong – i.e., at the locations of strongly-absorbing lines. As we will see later,
we can typically observe in a stellar atmosphere only down to τν ∼ 1. So at
the line locations where (absorption is nonzero), we observe approximately
Bν(TC). Thus in this toy model, the lines probe higher in the atmosphere (we
can’t observe as deeply into the star, because absorption is stronger at these
frequencies – so we effectively observe the cooler, fainter upper layers). Mean-
while there is effectively no absorption in the atmosphere, so we see down to
the hotter layer where emission is brighter. Fig. 18 shows a typical example.

Figure 18: Toy stellar spectrum (solid line) for the toy stellar model graphed
in Fig. 17.

Note that our assumption has been that temperature in the star decreases
with increasing altitude. More commonly, stellar models will parameterize an
atmosphere in terms of its pressure-temperature profile, with pressure P de-
creasing monotonically with increasing altitude. An interesting phenomenon
occurs when T increases with decreasing P (increasing altitude): in this case
we have a thermal inversion, all the arguments above are turned on their
heads, and the lines previously seen in absorption now appear in emission
over the same continuum. Thermal inversions are usually a second-order cor-
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rection to atmospheric models, but they are ubiquitous in the atmospheres of
the Sun, Solar System planets, and exoplanets.
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12 Stellar Classification, Spectra, and Some
Thermodynamics

Questions you should be able to answer after this lecture:

• What is the difference between Thermal equilibrium and Thermody-
namic equilibrium?

• What are the different temperatures that must be equal in Thermody-
namic equilibrium?

• When is Local Thermodynamic Equilibrium valid for a region?

12.1 Thermodynamic Equilibrium

Our goal is to quantitatively explain the trends observed in Fig. 4. To do that,
we need the tools provided to us by thermodynamics and statistical mechan-
ics. We claimed earlier that Sν = Bν(T), the source function is equal to the
blackbody function, for a source in thermodynamic equilibrium. So, what are
the conditions of thermodynamic equilibrium, and in what typical astronom-
ical sources are these conditions satisfied?

There are two main conditions for thermodynamic equilibrium.

1. Thermal equilibrium: There is no heat transfer in a source: classically,
it is at a constant, uniform temperature. However, as we will describe
further in Section 15.2, for a star we generally take this just to mean
that the temperature can vary spatially (but not in time), and that local
energy losses (say, due to energy transport) are exactly balanced by gains
(say, due to nuclear fusion).

2. Every temperature in the source is the same: the source is also in a
radiation, ionization, and excitation equilibrium.

So, how do we define all of these different temperatures a source or system
can have?

First, there is the kinetic temperature Tkin. This temperature describes the
random motion of particles in a system. For a system in thermodynamic equi-
librium, the distribution of speeds of particles (atoms or molecules) in this
system is given by the Maxwell-Boltzmann distribution:

(142) dNv = 4π n
�

m
2π kBTkin

�3/2
v2 exp

�
− mv2

2 kBTkin

�
dv

Here, dNv is the number of particles with mass m and number density n
between speeds v and v + dv.

Second, there is the excitation temperature Tex. This temperature describes
the distribution of internal energies in the particles in a system. This internal
energy can be the energy of different electronic states of an atom, or the en-
ergy of rotation or vibration in a molecule. For a system in thermodynamic
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equilibrium, the fraction of atoms (or molecules) occupying a particular en-
ergy state is given by the Boltzmann distribution (not to be confused with
Eq. 142!):

(143)
N1

N2
=

g1

g2
exp

�
−E1 − E2

kB Tex

�

Here, N1 is the number of atoms or molecules in a state with an energy E1
above the ground state, and N2 is the number of atoms or molecules in a state
with an energy E2 above the ground state. The statistical weight of each state
is given by g, which accounts for multiple configurations that might all have
the same energy (i.e., the statistical degeneracy).

Next is Trad, the radiation temperature in the system. This temperature is
defined by an equation we have seen before: the Planck distribution, or the
Blackbody law of Equation 16.

Finally, there is the ionization temperature Ti. This temperature describes
the degree to which electrons are bound to the particles in a system. The
fraction of the atoms in a gas which are ionized is given by the Saha equation,
derived below and given as Eq. 171.

12.2 Local Thermodynamic Equilibrium

How typical is it for astronomical sources (like stars or planets or gas clouds)
to be in thermodynamic equilibrium? In general, it is rare! Most sources are
going to have significant temperature variations (for example, from the inte-
rior to the exterior of a star or planet). However, the situation is not hopeless,
as in most sources, these changes are slow and smooth enough that over a
small region, the two conditions we described are sufficiently satisfied. Such
a situation is referred to as Local Thermodynamic Equilibrium or LTE.

When does LTE hold? First, for particles to have a Maxwell-Boltzmann dis-
tribution of velocities, and so to have a single kinetic temperature, the particles
must have a sufficient opportunity to ‘talk’ to each other through collisions.
Frequent collisions are also required for particles to have a uniform distri-
bution of their internal energy states. The frequency of collisions is inversely
proportional to the mean free path of the gas: the typical distance a particle
travels before undergoing a collision. In general, for a region to be in LTE,
the mean free path should be small compared to the distance over which
the temperature varies appreciably. As LTE further requires that the radiation
temperature is equal to the kinetic and excitation temperature, the matter and
radiation must also be in equilibrium. For this to happen, not only must the
mean free path for particles to undergo collisions with each other be small,
but the mean free path for photons to undergo collisions with matter must
be small as well. We have actually already introduced the mean free path for
photons: it is equal to α−1, where α was given in Equation 117 as the ex-
tinction coefficient, with units of fractional depletion of intensity per distance
traveled. As intensity is depleted by being absorbed by matter, the inverse of
the extinction coefficient describes the typical distance a photon will travel
before interacting with matter.
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Very qualitatively then, our two conditions for LTE are that the mean free
path for particle-particle and particle-photon interactions must be less than
the distance over which there is a significant temperature variation.

12.3 Stellar Lines and Atomic Populations

When we study stellar spectra, we examine how the strengths of various fea-
tures change. Fig. 4 suggests that this is a continuous process as a function of
Teff. For example, we never see lines of both He I (i.e., neutral He) and Ca II
(i.e., singly-ionized Ca, i.e. Ca+) at the same time – these lines appear at com-
pletely different temperatures. What we want is a quantitative understanding
of spectra.

When do we expect substantial excitation of these various atoms? Let’s
consider the electronic lines of atomic hydrogen. The H atom’s energy levels
are given by:

(144) En = −13.6 eV
n2

which gives rise to the Rydberg formula (Eq. 136) for the locations of individ-
ual lines.

To see conditions we need to excite these H atoms, we might make use
of the relative probability of 2 atomic states with different energies (given by
the Boltzmann distribution, Eq. 143). Statistical mechanics tells us that the
statistical weight of each level in a hydrogen atom is

(145) gn = 2n2

So for transitions between the ground state (−13.6 eV, n = 1) and the first
excited state (−3.4 eV, n = 2) the relative fraction is given by

(146)
n1

n2
=

g1

g2
exp [− (E1 − E2) /kBT]

When the levels are approximately equal, we then have

(147) 1 =
2
8

exp [10.2 eV/kBT]

The calculation above would thus imply that to get appreciable levels of
excited hydrogen, we would need T ≈ 90, 000 K — much hotter than the
observed temperatures of stars. In fact, H is totally ionized (not just mildly
excited) even at much lower temperatures. Meanwhile, even A and F stars
(with Teff ≤ 10, 000 K) show prominent n = 2 hydrogen lines. We got the
energetics right, but missed some other important thermodynamic quantities.

12.4 The Saha Equation

Let’s investigate our hydrogen atom in further detail. From statistical mechan-
ics, the distribution function of particles leads to the phase space density (see
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Eqns. 102 and 103):

(148) f (�r,�p) =
g
h3

1
e[E−µ]/kBT±1

where µ is the chemical potential and g is still the degeneracy factor:

g = 2s + 1(for fermions)
(149)

g = 2(for photons)
(150)

and where the ± operator is positive for Fermi-Dirac statistics and negative
for Bose-Einstein statistics.

Again, we’ll transform this six-dimensional density into a number density
by integrating over momentum (see Eq. 98):

(151) n = 4π

∞�

0

f (p)p2dp

But integrating Eq. 148 is going to be a bear of a job, so we’ll make two
additional approximations. First, we’ll assume for now that all particles are
non-relativistic – so their energy is given classically by

(152) E =
p2

2m
+ mc2

And we’ll also assume that we’re dealing with large energies, such that E −
µ >> kBT. In practice, this second point means we can neglect the ±1 in the
denominator of Eq. 148. Both these assumptions are reasonable for the gas in
most stars. We’ll come back later to some especially interesting astrophysical
cases, when these assumptions no longer hold.
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We can now make the attempt to calculate n from Eq. 151.

n = 4π

∞�

0

f (p)p2dp

(153)

=
4πg
h3

∞�

0

p2dp exp
�

µ

kBT

�
exp

�
−mc2

kBT

�
exp

�
− p2

2mkBT

�
(154)

=
4πg
h3 exp

��
µ − mc2

�
/kBT

� ∞�

0

p2 exp
�
− p2

2mkBT

�
(155)

=
g
h3 (2πmkBT)3/2 exp

��
µ − mc2

�
/kBT

�(156)

So now we have a relation between the number density and other relevant
quantities. We can rearrange this expression to get

(157) exp
�

µ − mc2

kBT

�
=

1
g

n
nQ

where nQ is the “quantum density”

(158) nQ ≡ (2πmkBT/h2)3/2

When n = nQ, then the spacing between particles n−1/3 is roughly equal to the
thermal de Broglie wavelength — the particles’ wave functions start to over-
lap, quantum effects ramp up, and degeneracy effects become increasingly
important.

Ideally we want to get rid of the pesky µ and set things in terms of other
quantities. Recall from thermodynamics that the chemical potential µ is just
the energy absorbed or released during reactions. At constant volume V and
entropy S, µ is determined by the change in internal energy U:

(159) µ ≡
�

∂U
∂n

� ����
V,S

The implication is that in equilibrium, all chemical potentials in a reaction
sum to zero. So given a notional reaction

A + B ←→ C + D

we must have both

(160) A + B = C + D
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and also

(161) µA + µB = µC + µD

Just as energies flow to equalize temperature and reach thermal equilibrium,
numbers of different particle species flow to reach chemical equilibrium. For
the H system under consideration, the reaction to ionize our hydrogen is

e− + p ←→ H + γ

In chemical equilibrium, we will then have

(162) µe + µp = µH

since the chemical potential of a photon is zero. Why is this useful? Because
we can rearrange Eq. 157 to find an expression for µ, and then use this in what
follows (we’re getting close). We find

(163) µi = mic2 + kBT ln
�

ni
ginQi

�

and of course mass-energy must also be conserved in the reaction:

(164) mHc2 = mpc2 + mec2 + �n

where �1 = −13.6 eV for full ionization. The statistical weights are a tad
trickier, but for our fermions we have gp = ge = 2 while for ionizing atomic
H we have gH = n2gpge = 4.

Requiring that the chemical potentials must balance, following Eq. 162 we
then have:

(165)

mpc2 + mec2 + kBT

�
ln

�
np

2nQp

�
+ ln

�
ne

2nQe

��
= mHc2 + kBT ln

�
nH

4nQH

�

Bringing in the results of Eq. 164, we then have

(166) ln

�
npne

4nQp nQe

�
=

−13.6 eV
kBT

+ ln
�

nH
4nQH

�

Rearranging terms, we then have

(167)
npne

nH

nQH

nQp nQe

= e−(13.6 eV/kBT)

We can simplify this one more step by recalling from Eq. 158 that nQP ≈ nQH .
This means that we have finally reached our goal:

(168)
npne

nH
= nQe e−(13.6 eV/kBT)
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which is famous as the Saha equation for hydrogen ionization. This tells us
how the relative number densities of p, e−, and H atoms will depend on the
temperature of the system of particles.

It’s traditional to refactor Eq. 168 by defining yet two more terms, the
baryon number

(169) nB = nH + np

(which is conserved) and the ionization fraction

(170) y =
ne

nB

which goes from zero (all neutral H) to unity (full ionization). When we divide
both sides of Eq. 168 by nB, we find the classical form of the Saha equation,

(171)
y2

1 − y
=

nQe

nB
e−(13.6 eV/kBT)

In a stellar photosphere, decent estimates are that nB ∼ 1016 cm−3 and

nQe ≈ 1021 cm−3 �T/104 K
�3/2. Eq. 171 is easily solved or plotted with nu-

merical tools — the result, shown in Fig. 19, is a steep function of temperature
that indicates ionization setting in at much lower temperatures than inferred
in Eq. 147 alone. Instead, we see essentially no ionization in the 5800 K Solar
photosphere, but we expect an ionization fraction of 5% at 9,000 K, rising to
50% at 12,000 K and 95% at 16,000 K. Although the Saha equation is a toy
model with only two level populations, it still does an excellent job in pre-
dicting that H lines should be absent (as they are) from the hottest O and B
stars.

In general, we also want to be able to properly treat the fact that there

Figure 19: Ionization fraction y as a function of temperature T as inferred from
the two-level Saha equation (Eq. 171).
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are an infinite number of energy levels (not just two) between the ground
state and full ionization. This means that we need to account for the partition
function ¯Z(T),

(172) ¯Z(T) ≡ Σgse−Es/kBT

In principle one can calculate one’s own partition functions, but in practice one
often leaves that to the experts and borrows appropriately from the literature.
So then the number density becomes

(173) n =

�
2πmekBT

h2

�3/2
eµ/kBT ¯Z(T)

Using this new form to repeat the analysis above, equality of chemical
potentials for the generic species A, B, and C will then yield

(174)
nBnC

nA
=

�
2πkBT

h2

�3/2 �mBmC
mA

3/2
�3/2 � Z̄BZ̄C

Z̄A

�

If the partition function is dominated by a single state (as in our simple two-
level example), we recover the earlier form:

(175)
nBnC

nA
=

�
2πkBT

h2

�3/2 �mBmC
mA

3/2
�3/2 gBgC

gA
e(EA−EB−EC)/kBT

Note that for simple level-change reactions within atomic H, most factors
cancel and we recover the usual Boltzmann distribution:

(176)
nB
nA

=
gB
gA

e(EA−EB)/kBT

As a few final remarks, note that the above analysis only applies for excita-
tion caused by the thermal distribution of particles in our system. So this won’t
properly treat photoionization (i.e. ejection of an electron due to an incoming,
highly-energetic photon). Also, everything here also requires mostly-classical
conditions, i.e. n << nQ for all species involved. In very dense plasmas, pres-
sure begins to affect electron orbital shapes and subsequently affects both
intermediate energy levels as well as ionization.
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13 Stellar Atmospheres

Having developed the machinery to understand the spectral lines we see in
stellar spectra, we’re now going to continue peeling our onion by examining
its thin, outermost layer – the stellar atmosphere. Our goal is to understand
how specific intensity Iν varies as a function of increasing depth in a stellar
atmosphere, and also how it changes depending on the angle relative to the
radial direction.

13.1 The Plane-parallel Approximation

Fig. 20 gives a general overview of the geometry in what follows. The star
is spherical (or close enough as makes no odds), but when we zoom in on a
small enough patch the geometry becomes essentially plane-parallel. In that
geometry, Sν and Iν depend on both altitude z as well as the angle θ from the
normal direction. We assume that the radiation has no intrinsic dependence
on either t or φ – i.e., the radiation is in steady state and is isotropic.

We need to develop a few new conventions before we can proceed. This
is because in our definition of optical depth, dτν = ανds, the path length ds
travels along the path. This Lagrangian description can be a bit annoying,
so it’s common to formulate our radiative transfer in a path-independent,
Eulerian, prescription.

Let’s call our previously-defined optical depth (Eq. 118) τ�
ν. We’ll then cre-

ate a slightly altered definition of optical depth – a vertical, ingoing optical
depth (this is the convention). The new definition is almost identical to the
old one:

(177) dτν = −ανdz

But now our optical depth, is vertical and oriented to measure inward, toward
the star’s interior. In particular since dz = ds cos θ, relative to our old optical
depth we now have

(178) dτν = −dτ�
ν cos θ

Figure 20: Schematic view of a stellar atmosphere, and at right a zoomed-in
view showing the nearly plane-parallel nature on small scales.
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Our radiative transfer equation, Eq. 125, now becomes

(179) − cos θ
dIν

dτν
= Sν(τν, θ)− Iν(τν, θ)

It’s conventional to also define µ = cos θ, so our radiative transfer equation
for stellar atmospheres now becomes

(180) µ
dIν

dτν
= Iν(τν, µ)− Sν(τν, µ).

We can solve this in an analogous manner to how we treated Eq. 132, multi-
plying all terms by e−τν/µ, then rearranging to see that

(181)
d

dτν

�
Iνe−τν/µ

�
= −Sν

µ
e−τν/µ.

Our solution looks remarkably similar to Eq. 133, except that we now ex-
plicitly account for the viewing angle µ:

(182) Iν(τν, µ) =

∞�

τν

Sν(τ�
ν, µ)

µ
e(τ

�
ν−τν)/µdτ�

ν

So we now have at least a formal solution that could explain how Iν varies as
a function of the vertical optical depth τν as well as the normal angle θ. It’s
already apparent that Iν at a given depth is determined by the contributions
from Sν at all deeper levels, but these Sν themselves depend on Iν there. So
we’d like to develop a more intuitive understanding than Eq. 182 provides.

Our goal will be to make a self-consistent model for Sν and Iν (or, as we’ll
see, Iν and T). We’ll again assume local thermodynamic equilibrium (LTE), so
that

(183) Sν = Bν(T) = Bν [T(τν)]

(since T increases with depth into the star).

First, let’s assume a simple form for Sν so we can solve Eq. 182. We already
tried a zeroth-order model for Sν (i.e. a constant; see Eq. 126), so let’s add a
first-order perturbation, assuming that

(184) Sν = aν + bντν

Where aν and bν are independent of τν – for example, two blackbodies of
different temperatures. When we plug this form into the formal solution of
Eq. 182 and turn the crank, we find that the emergent intensity from the top
of the star’s atmosphere (τν = 0) is

(185) Iν(τν = 0, µ) = aν + bνµ

Fig. 21 explains graphically what this solution means: namely, that the an-
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gular dependence of a star’s emergent radiation encodes the depth dependence
of its atmosphere’s source function. If the depth dependence is small, so will
the angular dependence be – and the reverse will also hold. So if bν ≈ 0, Iν

will be nearly isotropic with θ.

This describes the phenomenon of limb darkening, wherein the center
of a stellar disk appears brighter than the edge. This is commonly seen in
photographs of the Sun – it often looks to the eye like merely shadow effects
of a 3D sphere, but in fact this represents temperature stratification.

Another interesting consequence involves the fact that an observer can
only typically observe down to τν ≈ 1. Because of the depth and angular
dependencies we have just identified, this means that the surface where τν = 1
(or any other constant value) occurs higher in the stellar atmosphere at the
limb than at the disk center. Fig. 22 shows this effect. Since (as previously
mentioned) temperature drops with decreasing pressure for most of a star’s
observable atmosphere, this means that we observe a cooler blackbody at the
limb than at the center – and so the center appears brighter. (This is just a
different way of thinking about the same limb-darkening effect mentioned
above.) For the same reason, spectral lines look dark because at these lines αν

is largest and so τν occurs higher in the atmosphere, where temperatures are
lower.

Figure 21: Emergent intensity as a function of θ assuming the linear model for
Sν given by Eq. 184.

Figure 22: Depth dependence on the depth to which an observer can see into
a stellar atmosphere: we see deeper at the center than at the limb.
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13.2 Gray Atmosphere

Now let’s try to build a more self-consistent atmospheric model. To keep
things tractable, we’ll compensate for adding extra complications by simplify-
ing another aspect: we’ll assume a gray atmosphere in which the absorption
coefficient (and derived quantities are independent of frequency). So we will
use α instead of αν, and τ in place of τν.

In this case, the equation of radiative transfer still has the same form as in
Eq. 180 above:

(186) µ
dI
dτ

= I(τ, µ)− S(τ, µ)

With the difference that by ignoring frequency effects, we are now equiva-
lently solving for the bolometric quantities

(187) I =
�

ν

Iν dν

and

(188) S =
�

ν

Sν dν

Up until now, we’ve always assumed LTE with a Planck blackbody source
function whose temperature varies with depth. But we’ve only used ad hoc
models for this source — now, let’s introduce some physically meaningful
constraints. Specifically, let’s require that flux is conserved as it propagates
through the atmosphere. This is equivalent to saying there is no energy gen-
eration in the atmosphere: we just input a bunch of energy at the base and let
it transport through and escape from the top.

This requirement of flux conservation means that dF
dt = 0, where

(189) F =
�

I cos θdΩ =
�

µIdΩ

(by definition; see Eq. 92).
To apply this reasonable physical constraint, let’s integrate Eq. 186 over all

solid angles:

(190)
�

µ
∂I
∂τ

dΩ =
�
(I − S)dΩ

which implies that

(191)
dF
dτ

= 4π�I� − 4πS

which equals zero due to flux conservation. Note that S is isotropic, while
in general I may not be (i.e. more radiation comes out of a star than goes
into it from space). The perhaps-surprising implication is that in our gray
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atmosphere,

(192) S = �I�

at all altitudes.

We can then substitute �I� for S in Eq. 186, to find

S = I − µ
dI
dτ

(193)

�I� = I − µ
dI
dτ

(194)

1
2

1�

−1

Idµ = I − µ
dI
dτ

(195)

This is an integro-differential equation for gray atmospheres in radiative equi-
librium. Though it looks odd, it is useful because an exact solution exists.
After finding �I� = S, we can use our formal solution to the radiative transfer
equation to show that

(196) S =
3F0

4π
[τ + q(τ)]

where F0 is the input flux at the base of the atmosphere and q(τ) is the Hopf
function, shown in Fig. 23. Let’s examine an approximation to this function
that provides a lot of insight into what’s going on.

We’ll start by examining the moments of the radiative transfer equation,

Figure 23: Hopf function q(τ), which has as its limits q(0) = 1/
√

3 and q(∞) =
0.7101....
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where moment n is defined as

(197) µn+1
�

∂I
∂τ

dΩ =
�

µn(I − S)dΩ

We already did n = 0 back in Eq. 190, so let’s consider n = 1. We’ll need each
of the following terms, given in Eqs. 198–200:

(198)
�

µSdΩ = 2πS
1�

−1

µdµ

which equals zero, since S is isotropic.

(199)
�

µIdΩ ≡ F

(the definition of flux), and finally

(200)
�

µ2 IdΩ =
�

I cos2 θdΩ ≡ cPrad

from Eq. 113.
The first moment then becomes

(201) c
dP
dτ

= F

which we have required to be constant. Thus, we find that

(202) Prad =
F
c
(τ + Q)

where here Q is a constant of integration; when certain assumptions are lifted,
this becomes the Hopf function q(τ) of Fig. 23.

13.3 The Eddington Approximation

Eq. 202 is a potentially powerful result, because it tells us that in our gray,
flux-conserving atmosphere the radiation pressure is just a linear function of
the bolometric flux. This will become even more useful, since we are about to
connect this back to S, and thence to I (a more useful observational diagnostic
than P).

From the expression for the radiation pressure of a blackbody field (Eq. 113)
we have that

P =
4π

3c

�
Bνdν

(203)

=
4π

3c
S

(204)
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since we assume LTE, and thus our source function is the Planck function.
However, remember that our atmosphere exhibits a temperature gradient, so
our radiation field isn’t actually a pure blackbody. We therefore make the key
assumption — the Eddington approximation — that the temperature gradi-
ent is weak enough that the above expression for P is valid (correcting this
assumption turns Q into q(τ)).

Under these assumptions, we then combine Eq. 204 and 202 to find

S =
3F
4π

(τ + Q)

(205)

=
3F
4π

�
τ +

2
3

�(206)

Thus the stellar atmosphere’s source function is just a linear function of op-
tical depth – just as we had blithely assumed in Eq. 184 when introducing
limb darkening. The value of 2/3 comes from a straightforward but tedious
derivation described in Sec. 2.4.2 of the Choudhuri textbook.

We can also use Eq. 206 to clarify our previous discussion of limb darken-
ing. Since we now know the particular linear dependence of S on τ, we can
dispense with the arbitrary constants in Eq. 185 to show that the emergent
intensity is

(207) I(τ = 0, µ) =
3F
4π

�
µ +

2
3

�

which shows decent agreement with observational data. This type of expres-
sion is called a linear limb-darkening “law”. Because of our assumptions
this doesn’t perfectly fit observed stellar limb-darkening profiles, so there is
a whole family of various relations that people use (some physically justified,
some empirical).

Finally, given the exact functional form of S in Eq. 206, we can now com-
pute the stellar atmosphere’s thermal structure – how its temperature changes
with optical depth, pressure, or altitude. This relation is derived by relating S
to the Stefan-Boltzmann flux F from Eq. 18:

S =
�

Sνdν

(208)

=
�

Bνdν

(209)

=
σSBT4

π

(210)

(as for that factor of π, see Sec. 1.3 of the Rybicki & Lightman). We now have
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S(T) as well as S(τ), so combining Eqs. 206, Eq. 210, and the Stefan-Boltzmann
flux (Eq. 18) we obtain a relation that

(211) T4(τ) =
3
4

T4
eff

�
τ +

2
3

�

This gives us the thermal profile through the star’s atmosphere. As we
move deeper into the star the vertical optical depth τ increases (Eq. 177) and
the temperature rises as well (Eq. 211). Note too that the atmospheric temper-
ature T = Teff when τ = 2/3. Earlier we have claimed that we see down to a
depth of τ ≈ 1, so we have no refined that statement to say that we see into a
stellar atmosphere down to the τ = 2/3 surface.

13.4 Frequency-Dependent Quantities

We’ve achieved quite a bit, working only with frequency-integrated quanti-
ties: in particular, the temperature structure in Eq. 211 and the formal solution
Eq. 182. However, although our earlier treatment of excitation and ionization
of atomic lines (Sec. 12.4) qualitatively explains some of the trends in absorp-
tion lines seen in stellar spectra, we have so far only discussed line formation
in the most qualitative terms.

We expect intensity to vary only slowly with frequency when tempera-
tures are low. This because we expect the ratio R(ν) between intensities at two
temperatures to scale as:

R(ν) =
Iν(TB)

Iν(TA)

(212)

≈ Bν(TB)

Bν(TA)

(213)

=
ehν/kTA − 1
ehν/kTB − 1

(214)

This is consistent with the observed frequency dependence of limb darkening,
which is seen to be much weaker at longer (infrared) wavelengths and stronger
at shorter (e.g., blue-optical) wavelengths.

Let’s now consider a more empirical way to make progress, based on the
fact that we can observe the intensity emerging from the top of the atmo-
sphere, Iν(τν = 0, µ), across a wide range of frequencies. Expanding on our
earlier, linear model of Sν (Eq. 184), a fully valid expression for the source
function is always

(215) Sν =
∞

∑
n=0

aν,nτn
ν

Putting this into our formal solution, Eq. 182, and invoking the definition of
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13.5. Opacities

the gamma function gives

(216) Iν(0, µ) =
∞

∑
n=0

aν,n(n!)µn

So long as we are in LTE, then we also have Sν(τν) = Bν[T(τν)]. This lets us
map out T(τν), which we can do for multiple frequencies – as shown in Fig. 24.
Each T corresponds to a particular physical depth in the stellar atmosphere, so
we have successfully identified a mapping between optical depth, frequency,
and temperature.

Since for any ν we typically observe only down to a constant τν ≈ 2/3, we
can rank the absorption coefficients ανi for each of the νi sketched in Fig. 24.
For any given τν, T(τν) is greatest for ν1 and least for ν3. Thus we are seeing
deepest into the star at ν1 and αν1 must be relatively small, while on the other
hand we see only to a shallow depth (where T is lower) at ν3 and so αν3 must
be relatively large.

13.5 Opacities

What affects a photon as it propagates out of a stellar atmosphere? So far we
haven’t talked much about the explicit frequency dependence of αν, but this
is essential in order to interpret observations.

From the definition of αν in Eq. 116, one sees that

(217) nσν = ρκν

A lot of work in radiative transfer is about calculating the opacity κν given ρ,
T, and composition. In practice most desired opacities are tabulated and one
uses a simple look-up table for ease of calculation. Nonetheless we can still
consider some of the basic cases. These include:

1. Thomson (electron) scattering

2. Bound-bound reactions

3. Bound-free: photoionization & recombination

Figure 24: Notional atmospheric structure, T(τν), with different frequencies
νi.
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4. Free-free: Bremsstrahlung

Thomson scattering

The simplest effect is Thomson scattering, also known as electron scattering.
In this interaction a photon hits a charged particle, shakes it up a bit (thus
taking energy out of the radiation field), and is then re-radiated away. The
basic (frequency-independent) cross-section is derived in many textbooks (e.g.
Rybicki & Lightman, Sec. 3.4), which shows that in cgs units,

(218) σT =
8π

3

�
e2

mec2

�2

or approximately 2/3 × 10−24 cm2 (or 2/3 of a “barn”).
Notice that σT ∝ m−2, so the lightest charge-carriers are the most important

– this means electrons. Eq. 218 suggests that in a notional medium composed
solely of electrons, we would have

(219) κν =
neσT

ρe
=

σT
me

In any real astrophysical situation our medium will contain a wide range of
particles, not just electrons. So in actuality we have

(220) κν =
neσT
ρtot

≡ 1
µe

σT
mp

where we have now defined the mean molecular weight of the electron to be

(221) µe =
ρtot

nemp

The quantity µe represents the mean mass of the plasma per electron, in
units of mp (note that this is a bit different from the mean molecular weight for
ions, which is important in stellar interior calculations). But in a fully ionized
H-only environment, ne = N cm−3 while ρ = Nmp cm−3 — so µe = 1.
Meanwhile in a fully ionized, 100% He plasma, ne = 2N cm−3 while ρ =
4N cm−3 — so in this case, µe = 2.

Bound-bound transitions

As the name implies, these involve changes between energy levels that still
leave all particles bound. Most stellar opacity sources are of this type, which
give rise to lines such as those depicted schematically in Fig. 25. In all cases
the intrinsic line width Δν ∼ h̄/τ is given by the Heisenberg uncertainty prin-
ciple and by τ, the typical lifetime of the state. Depending on the system
being studied. But τ can change considerably depending on the system under
analysis.
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13.5. Opacities

The general expression for the line’s cross-section will be that

(222) σν =
πe2

mec
f Φ(ν − ν0)

where f is the transition’s dimensionless oscillator strength (determined by
the atomic physics) and Φ(ν − ν0) is the line profile shape as sketched in
Fig. 25. Note that Eq. 222 will also sometimes be written not in terms of f but
rather as

(223) σν =
BLUhν

4π
Φ(ν − ν0)

where BLU is the “Einstein B” coefficient for the transition from the lower to
the upper state.

Regardless, the lifetime of the state may be intrinsic (and long-lived) if the
particles involved are isolated and non-interacting, and undergo only spon-
taneous emission. This gives rise to the narrowest lines, which are said to be
naturally broadened.

When conditions are denser and the particle interaction timescale � τ,
then collisions perturb the energy levels and so slightly higher- or lower-
energy photons can couple to the particles involved. This leads to pressure
broadening (or collisional broadening), which leads (as the name implies) to
broader lines in higher-pressure environments.

Finally, particle velocities will impart a range of Doppler shifts to the ob-
served line profile, causing various types of extrinsic broadening. In general
these can all be lumped under the heading of Doppler broadening, in which
the line width is set by the material’s velocity,

(224)
Δν

ν0
=

vr

c

This is an important effect for the accretion (or other) disks around black
holes and around young stars, and also for the nearly-solid-body rotation of
individual stars.

There’s a lot more to say about bound-bound transitions than we have
time for here. But whatever the specific situation, our approach will always be

Figure 25: Schematic of σν for bound-bound reactions, showing a line centered
at ν0 and with intrinsic width Δν ∼ h̄/τ.
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Figure 26: Bremsstrahlung (braking radiation) — an electron decelerates near
an ion and emits a photon.

the following: use the Saha and Boltzmann equations to establish the popula-
tions in the available energy levels; then use atomic physics to determine the
oscillator strength f and line profile Φ(ν − ν0).

Bremsstrahlung

If you speak German, you might recognize that this translates as “braking
radiation” — and Bremsstrahlung (or “free-free”) is radiation caused by the
deceleration of charged particles (typically electrons), as shown schematically
in Fig. 26. Under time reversal, this phenomenon also represents absorption
of a photon and acceleration of the electron. Typically this is modeled as oc-
curring as the e− is near (but not bound to) a charged but much more massive
ion, which is assumed to be stationary during the interaction. Rybicki & Light-
man devote a whole chapter to Bremsstrahlung, but we’ll just settle for two
useful rules of thumb:

(225) α
f f
ν ≈ 0.018T−3/2Z2neniν

−2 ¯g f f

and

�
f f
ν ≈ (6.8 × 10−38)Z2neniT−1/2e−hν/kT ¯g f f

where Z is the ionic charge and ¯g f f is the Gaunt factor, typically of order
unity.

Free-free absorption is dependent on both temperature and density, and is
often commonly described by Kramer’s opacity law:

(226) κ f f =
1
2

κ f f ,0(1 + X)�Z
2

A �ρT−7/2

Bound-free

In this case, electrons transition between a bound (possibly excited) state and
the free (i.e., ionized) state. If the initial state is bound, then an incoming
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13.5. Opacities

Figure 27: Extinction coefficient αν for bound-free transitions of the H atom
(from Gray’s Stellar Photospheres, Fig. 8.2). The characteristic scaling with ν−3 ∝
λ3 is clearly apparent.

photon comes in and (possibly) ejects an electron. Thus the e− begins within a
series of discretized, quantum, atomic energy levels and ends unbound, with
a continuum of energy levels available to it. A full derivation shows that for
a given bound transition we find σν ∝ ν−3. But as ν decreases toward the
ionization threshold νi (e.g., 13.6 ev/h for H in the ground state), then σν will
sharply drop when the photon is no longer able to ionize. But assuming there
is some excited hydrogen (e.g., ν2=13.6/4h for H in the n = 2 state), then there
will be a second one-sided peak located at ν2, and so on as shown in Fig. 27.

H-minus opacity

For years after astronomers first turned their spectrographs toward the Sun,
it was unclear which processes explained the observed Solar opacity. It was
apparent that the opacity was fairly large, despite the fact that H and He are
almost entirely neutral in the Solar photosphere and bound-bound transitions
also weren’t able to explain the data.

The solution turned out to be the negative hydrogen ion, H−, which is sta-
ble because the normal H atom is highly polarized and can hold another e−.
The electron is bound only weakly, with a dissociation energy of just 0.75 eV
(no stable, excited states exist). Thus all photons with λ � 1.7µm can poten-
tially break this ion and, being absorbed, contribute to an overall continuum
opacity that is strongest from 0.4–1.4µm. The magnitude of the total H− opac-
ity depends sensitively on the ion’s abundance: it drops off steeply in stars
much hotter than the Sun (when most H− is ionized) and in the very coolest
stars (when no free e− are available to form the ion). In addition to being a
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key opacity source in many stars, H− has only recently been recognized as
a key opacity source in the atmospheres of the hottest extrasolar planets (see
e.g. Lothringer et al., 2018).
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Having dealt with the stellar photosphere and the radiation transport so rel-
evant to our observations of this region, we’re now ready to journey deeper
into the inner layers of our stellar onion. Fundamentally, the aim we will de-
velop in the coming chapters is to develop a connection between M, R, L, and
T in stars (see Table 14 for some relevant scales).

More specifically, our goal will be to develop equilibrium models that
describe stellar structure: P(r), ρ(r), and T(r). We will have to model grav-
ity, pressure balance, energy transport, and energy generation to get every-
thing right. We will follow a fairly simple path, assuming spherical symmetric
throughout and ignoring effects due to rotation, magnetic fields, etc.

Before laying out the equations, let’s first think about some key timescales.
By quantifying these timescales and assuming stars are in at least short-term
equilibrium, we will be better-equipped to understand the relevant processes
and to identify just what stellar equilibrium means.

14.1 Photon collisions with matter

This sets the timescale for radiation and matter to reach equilibrium. It de-
pends on the mean free path of photons through the gas,

(227) � =
1

nσ

So by dimensional analysis,

(228) τγ ≈ �

c

If we use numbers roughly appropriate for the average Sun (assuming full

Table 3: Relevant stellar quantities.
Quantity Value in Sun Range in other stars
M 2 × 1033 g 0.08 � (M/M�) � 100
R 7 × 1010 cm 0.08 � (R/R�) � 1000
L 4 × 1033 erg s−1 10−3 � (L/L�) � 106

Teff 5777 K 3000 K � (Teff/K) � 50,000 K
ρc 150 g cm−3 10 � (ρc/g cm−3) � 1000
Tc 1.5 × 107 K 106 � (Tc/K) � 108
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dr

ρ

dA
P

P+dP
g

r

Mr

Figure 28: The state of hydrostatic equilibrium in an object like a star occurs
when the inward force of gravity is balanced by an outward pressure gradient.
This figure illustrates that balance for a packet of gas inside of a star

ionization, and thus Thomson scattering), we have

� =
1

nσ

(229)

=
mp

ρσT

(230)

=
1.7 × 10−24 g

(1.4 g cm−3)(2/3 × 10−24 cm−2)

(231)

≈ 2 cm
(232)

So the matter-radiation equilibration timescale is roughly τγ ≈ 10−10 s. Pretty
fast!

14.2 Gravity and the free-fall timescale

For stars like the sun not to be either collapsing inward due to gravity or
expanding outward due to their gas pressure, these two forces must be in
balance. This condition is known as hydrostatic equilibrium. This balance is
illustrated in Figure 28

As we will see, gravity sets the timescale for fluid to come into mechanical
equilibrium. When we consider the balance between pressure and gravity on a
small bit of the stellar atmosphere with volume V = Adr (sketched in Fig. 28),
we see that in equilibrium the vertical forces must cancel.

The small volume element has mass dm and so will feel a gravitational
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14.2. Gravity and the free-fall timescale

force equal to

(233) Fg =
GMr dm

r2

where Mr is the mass of the star enclosed within a radius r,

(234) M(r) ≡ 4π

r�=r�

r�=0

ρ(r�)r�2dr�

Assuming the volume element has a thickness dr and area dA, and the
star has a uniform density ρ, then we can replace dm with ρdrdA. This volume
element will also feel a mean pressure which we can define as dP, where the
pressure on the outward facing surface of this element is P and the pressure
on the inward facing surface of this element is P + dP. The net pressure force
is then dPdA, so

FP(r) = Fg(r)
(235)

A (P(r)− P(r + dr)) = −ρVg
(236)

= ρAdrg
(237)

(238)

which yields the classic expression for hydrostatic equilibrium,

(239)
dP
dr

= ρ(r)g(r)

where

(240) g ≡ −GM(r)
r2

and M(r) is defined as above.
When applying Eq. 239 to stellar interiors, it’s common to recast it as

(241)
dP
dr

= −GM(r)ρ(r)
r2

In Eqs. 239 and 241 the left hand side is the pressure gradient across our
volume element, and the right hand side is the gravitational force averaged
over that same volume element. So it’s not that pressure balances gravity in a
star, but rather gravity is balanced by the gradient of increasing pressure from
the center to the surface.

The gradient dP/dr describes the pressure profile of the stellar interior in
equilibrium. What if the pressure changes suddenly – how long does it take
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Figure 29: A simple model of a star having a radius R, mass M, constant den-
sity ρ, a constant temperature T, and a fully ionized interior. This simple model
can be used to derive a typical free-fall time and a typical sound-crossing time
for the sun.

us to re-establish equilibrium? Or equivalently: if nothing were holding up a
star, how long would it take to collapse under its own gravity? Looking at
Figure 29, we can model this as the time it would take for a parcel of gas on
the surface of a star, at radius R, to travel to its center, due to the gravitational
acceleration from a mass M.

Looking at Figure 29, we can model this as the time it would take for a
parcel of gas on the surface of a star, at radius R, to travel to its center, due to
the gravitational acceleration from a mass M. To order of magnitude, we can
combine the following two equations

(242) a = −GM
r2

and

(243) d = −1
2

at2.

Setting both r and d equal to the radius of our object R, and assuming a
constant density ρ = 3M

4πR3 , we find

(244) τf f ∼
1�
Gρ

which is within a factor of two of the exact solution,

(245) τf f =

�
3π

32Gρ
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Note that the free-fall timescale does not directly depend on the mass of
an object or its radius (or in fact, the distance from the center of that object).
It only depends on the density. Since G ≈ 2/3× 10−7 (cgs units), with �ρ�� ≈
1 g cm−3, the average value is τdyn ∼ 30 min.

In real life, main-sequence stars like the sun are stable and long-lived struc-
tures that are not collapsing. Even if you have a cloud of gas that is collapsing
under its own gravity to form a star, it does not collapse all the way to R = 0
thanks to its internal hydrostatic pressure gradient.

14.3 The sound-crossing time

We have an expression for the time scale upon which gravity will attempt to
force changes on a system (such changes can either be collapse, if a system
is far out of hydrostatic equilibrium and gravity is not significantly opposed
by pressure, or contraction, if a system is more evenly balanced). What is the
corresponding time scale upon which pressure will attempt to cause a system
to expand?

The pressure time scale in a system can be characterized using the sound
speed (as sound is equivalent to pressure waves in a medium). This isothermal
sound speed is given by the relation

(246) cs =

�
P
ρ

Although gas clouds in the interstellar medium may be reasonably ap-
proximated as isothermal, the same is not true for stars. We will ignore that
fact for now, but will return to this point later.

Referring back to Figure 29, we can define the sound-crossing time for an
object as the time it takes for a sound wave to cross the object. Using a simple
equation of motion d = vt and approximating 2R just as R we can then define
a sound-crossing time as

(247) τs ∼ R
�

ρ

P

Using the ideal gas equation, we can substitute ρ
m̄ kT for P and get an ex-

pression for the sound crossing time in terms of more fundamental parameters
for an object:

(248) τs ∼ R
�

m̄
kT

Unlike the free-fall time we derived earlier, the sound-crossing time depends
directly upon the size of the object, and its temperature. At the center of the
Sun, Tc ≈ 1.5 × 107 K and m̄ ∼ mp and so the sound-crossing timescale is
roughly 30 min.
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Note that by Eq. 245 we see that τs is also approximately equal to the free-
fall timescale τf f . For an object not just to be in hydrostatic equilibrium but to
remain this way, the pressure must be able to respond to changes in gravity,
and vice versa. This response requires that a change in one force is met with
a change in another force on a timescale that is sufficiently fast to restore the
force balance. In practice, this means that for objects in hydrostatic equilib-
rium, the free-fall time is more or less equivalent to the sound-crossing time.
In that way, a perturbation in pressure or density can be met with a corre-
sponding response before the object moves significantly out of equilibrium.

14.4 Radiation transport

If photons streamed freely through a star, they’d zip without interruption
from the core to the stellar surface in R�/c ≈ 2 s. But as we saw above in
Eq. 232, the photons actually scatter every ∼1 cm. With each collision they
“forget” their history, so the motion is a random walk with N steps. So for a
single photon7 to reach the surface from the core requires

(249) �
√

N ∼ R�

which implies that the photon diffusion timescale is

(250) τγ,diff ∼
N�

c
∼ R2

�
�

1
c

or roughly 104 yr.

14.5 Thermal (Kelvin-Helmholtz) timescale

The thermal timescale answers the question, How long will it take to radiate
away an object’s gravitational binding energy? This timescale also governs the
contraction of stars and brown dwarfs (and gas giant planets) by specifying
the time it takes for the object to radiate away a significant amount of its
gravitational potential energy. This is determined by the Kelvin-Helmholtz
timescale. This thermal time scale can generally be given as:

(251) τKH =
E
L

,

where E is the gravitational potential energy released in the contraction to its
final radius and L is the luminosity of the source. Approximating the Sun as
a uniform sphere, we have

(252) τKH ∼ GM2
�

R�
1

L�

7This is rather poetic – of course a given photon doesn’t survive to reach the surface, but is
absorbed and re-radiated as a new photon ∼ (R�/�)2 times. Because of this, it may be better to
think of the timescale of Eq. 250 as the radiative energy transport timescale.
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which is roughly 3 × 107 yr.
Before nuclear processes were known, the Kelvin-Helmholtz timescale was

invoked to argue that the Sun could be only a few 107 yr old – and therefore
much of geology and evolutionary biology (read: Darwin) must be wrong.
There turned out to be missing physics, but τKH turns out to still be important
when describing the contraction of large gas clouds as they form new, young
stars.

The time that a protostar spends contracting depends upon its mass, as
its radius slowly contracts. A 0.1 M� star can take 100 million years on the
Hayashi track to finish contracting and reach the main sequence. On the other
hand, a 1 M� star can take only a few million years contracting on the Hayashi
track before it develops a radiative core, and then spends up to a few tens of
millions of years on the Henyey track before reaching the main sequence and
nuclear burning equilibrium. The most massive stars, 10 M� and above, take
less than 100,000 years to evolve to the main sequence.

14.6 Nuclear timescale

The time that a star spends on the main sequence – essentially the duration of
the star’s nuclear fuel under a constant burn rate – is termed the the nuclear
timescale. It is a function of stellar mass and luminosity, essentially analogous
to the thermal time scale of Equation 251. Here, the mass available (technically,
the mass difference between the reactants and product of the nuclear reaction)
serves as the energy available, according to E = mc2.

If we fuse 4 protons to form one He4 nucleus (an alpha particle), then the
fractional energy change is

(253)
ΔE
E

=
4mpc2 − mHec2

4mpc2 ≈ 0.007

This is a handy rule of thumb: fusing H to He liberates roughly 0.7% of the
available mass energy. As we will see, in more massive stars heavier elements
can also fuse; further rules of thumb are that fusing He to C and then C to
Fe (through multiple intermediate steps) each liberates another 0.1% of mass
energy. But for a solar-mass star, the main-sequence nuclear timescale is

(254) τnuc =
ΔE
Etot

≈ 0.007M�c2

L�
≈ 1011 yr

which implies a main-sequence lifetime of roughly 100 billion years. The ac-
tual main-sequence lifetime for a 1M� star is closer to 10 billion years; it turns
out that significant stellar evolution typically occurs by the time ∼10% of a
star’s mass has been processed by fusion.

14.7 A Hierarchy of Timescales

So if we arrange our timescales, we find a strong separation of scales:
τnuc � τKH � τγ,di f f � τdyn � τγ

1011 yr � 3 × 107 yr � 104 yr � 30 min � 10−10 s
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This separation is pleasant because it means whenever we consider one
timescale, we can assume that the faster processes are in equilibrium while
the slower processes are static.

Much excitement ensues when this hierarchy breaks down. For example,
we see convection occur on τdyn which then fundamentally changes the ther-
mal transport. Or in the cores of stars near the end of their life, τnuc becomes
much shorter. If it gets shorter than τdyn, then the star has no time to settle
into equilibrium – it may collapse.

14.8 The Virial Theorem

In considering complex systems as a whole, it becomes easier to describe im-
portant properties of a system in equilibrium in terms of its energy balance
rather than its force balance. For systems in equilibrium– not just a star now,
or even particles in a gas, but systems as complicated as planets in orbit, or
clusters of stars and galaxies– there is a fundamental relationship between the
internal, kinetic energy of the system and its gravitational binding energy.

This relationship can be derived in a fairly complicated way by taking
several time derivatives of the moment of inertia of a system, and applying
the equations of motion and Newton’s laws. We will skip this derivation, the
result of which can be expressed as:

(255)
d2 I
dt2 = 2�K�+ �U�,

where �K� is the time-averaged kinetic energy, and �U� is the time-averaged
gravitational potential energy. For a system in equilibrium, d2 I

dt2 is zero, yielding
the form more traditionally used in astronomy:

(256) �K� = −1
2
�U�

The relationship Eq. 256 is known as the Virial Theorem. It is a consequence
of the more general fact that whenever U ∝ rn, we will have

(257) �K� = 1
n
�U�

And so for gravity with U ∝ r−1, we have the Virial Theorem, Eq. 256.
When can the Virial Theorem be applied to a system? In general, the sys-

tem must be in equilibrium (as stated before, this is satisfied by the second
time derivative of the moment of inertia being equal to zero). Note that this
is not necessarily equivalent to the system being stationary, as we are consid-
ering the time-averaged quantities �K� and �U�. This allows us to apply the
Virial Theorem to a broad diversity of systems in motion, from atoms swirling
within a star to stars orbiting in a globular cluster, for example. The system
also generally must be isolated. In the simplified form we are using, we don’t
consider so-called ‘surface terms’ due to an additional external pressure from
a medium in which our system is embedded. We also assume that there are
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not any other sources of internal support against gravity in the system apart
from the its internal, kinetic energy (there is no magnetic field in the source,
or rotation). Below, we introduce some of the many ways we can apply this
tool.

Virial Theorem applied to a Star

For stars, the Virial Theorem relates the internal (i.e. thermal) energy to the
gravitational potential energy. We can begin with the equation of hydrostatic
equilibrium, Eq. 239. We multiply both sides by 4πr3 and integrate as follows

(258)
R�

0

dP
dr

4πr3dr = −
R�

0

�
GM(r)

r

��
4πr2ρ(r)

�
dr

The left-hand side can be integrated by parts,

(259)
R�

0

dP
dr

4πr3dr = 4πr3P|R0 − 3
R�

0

P4πr2dr

and since r(0) = and P(R) = 0, the first term equals zero. We can deal with
the second term by assuming that the star is an ideal gas, replacing P = nkT,
and using the thermal energy density

(260) u =
3
2

nkT =
3
2

P

This means that the left-hand side of Eq. 258 becomes

(261) −2
R�

0

u(4πr2dr) = −2Eth

Where Eth is the total thermal energy of the star.
As for the right-hand side of Eq. 258, we can simplify it considerably by

recalling that

(262) Φg = −GM(r)
r

and

(263) dM = 4πr2ρ(r)dr.

Thus the right-hand side of Eq. 258 becomes simply

(264)
R�

0

Φg(M�)dM� = Egrav
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And so merely from the assumptions of hydrostatic equilibrium and an
ideal gas, it turns out that

(265) Egrav = −2Eth

or alternatively,

(266) Etot = −Eth = Egrav/2

The consequence is that the total energy of the bound system is negative,
and that it has negative heat capacity – a star heats up as it loses energy!
Eq. 266 shows that if the star radiates a bit of energy so that Etot decreases,
Eth increases while Egrav decreases by even more. So energy was lost from
the star, causing its thermal energy to increase while it also becomes more
strongly gravitationally bound. This behavior shows up in all gravitational
systems with a thermal description — from stars to globular clusters to Hawk-
ing radiation near a black hole to the gravitational collapse of a gas cloud into
a star.

Virial Theorem applied to Gravitational Collapse

We can begin by restating the Virial Theorem in terms of the average total
energy of a system �E�:

(267) �E� = �K�+ �U� = 1
2
�U�

A classic application of this relationship is then to ask, if the sun were
powered only by energy from its gravitational contraction, how long could
it live? To answer this, we need to build an expression for the gravitational
potential energy of a uniform sphere: our model for the gravitational potential
felt at each point inside of the sun. We can begin to put this into equation form
by considering what the gravitational potential is for an infinitesimally thin
shell of mass at the surface of a uniformly-dense sphere.

Using dM as defined previously, the differential change in gravitational
potential energy that this shell adds to the sun is

(268) dU = −GM(r)dM
r

.

The simplest form for M(r) is to assume a constant density. In this case, we
can define

(269) M(r) =
4
3

π r3ρ

To determine the total gravitational potential from shells at all radii, we must
integrate Equation 268 over the entire size of the sphere from 0 to R, substi-
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tuting our expressions for dM and M(r) from Equations 263 and 269:

(270) U = −G(4π ρ)2

3

R�

0

r4dr.

Note that if this were not a uniform sphere, we would have to also consider ρ
as a function of radius: ρ(r) and include it in our integral as well. That would
be a more realistic situation for a star like our sun, but we will keep it simple
for now.

Performing this integral, and replacing the average density ρ with the
quantity 3M

4πR3 , we then find

(271) U = −G(3M)2

R6
R5

5
= −3

5
GM2

R

which is the gravitational potential (or binding energy) of a uniform sphere.
All together, this is equivalent to the energy it would take to disassemble this
sphere, piece by piece, and move each piece out to a distance of infinity (at
which point it would have zero potential energy and zero kinetic energy).

To understand how this relates to the energy available for an object like the
sun to radiate as a function of its gravitational collapse, we have to perform
one more trick, and that is to realize that Equation 267 doesn’t just tell us
about the average energy of a system, but how that energy has evolved. That
is to say,

(272) ΔE =
1
2

ΔU

So, the change in energy of our sun as it collapsed from an initial cloud to its
current size is half of the binding energy that we just calculated. How does our
star just lose half of its energy as it collapses, and where does it go? The Virial
Theorem says that as a cloud collapses it turns half of its potential energy into
kinetic energy (Equation 256). The other half then goes into terms that are not
accounted for in the Virial Theorem: radiation, internal excitation of atoms
and molecules and ionization (see the Saha Equation, Equation 171).

Making the simplistic assumption that all of the energy released by the
collapse goes into radiation, then we can calculate the energy available purely
from gravitational collapse and contraction to power the luminosity of the
sun. Assuming that the initial radius of the cloud from which our sun formed
is not infinity, but is still large enough that the initial gravitational potential
energy is effectively zero, the energy which is radiated from the collapse is
half the current gravitational potential energy of the sun, or

(273) Eradiated = − 3
10

GM2
�

R�

Eq. 273 therefore links the Virial Theorem back to the Kelvin-Helmholtz
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timescale of Sec. 14.5. For the sun, this is a total radiated energy of ∼ 1041 J.
If we assume that the sun radiates this energy at a rate equal to its current
luminosity (∼ 1026 W) then we can calculate that the sun could be powered at
its current luminosity just by this collapse energy for 1015 s, or 3 × 107 years.
While this is a long time, it does not compare to our current best estimates
for the age of the earth and sun: ∼4.5 billion years. As an interesting histori-
cal footnote, it was Lord Kelvin who first did this calculation to estimate the
age of the sun (back before we knew that the sun must be powered by nu-
clear fusion). He used this calculation to argue that the Earth must only be
a few million years old, he attacked Charles Darwin’s estimate of hundreds
of millions of years for the age of the earth, and he argued that the theory of
evolution and natural selection must be bunk. In the end of course, history
has shown who was actually correct on this point.
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15 Stellar Structure

Questions you should be able to answer after these lectures:

• What equations, variables, and physics describe the structure of a star?

• What are the two main types of pressure in a star, and when is each
expected to dominate?

• What is an equation of state, and what is the equation of state that is
valid for the sun?

15.1 Formalism

One of our goals in this class is to be able to describe not just the observ-
able, exterior properties of a star, but to understand all the layers of these
cosmic onions — from the observable properties of their outermost layers to
the physics that occurs in their cores. This next part will then be a switch
from some of what we have done before, where we have focused on the “sur-
face” properties of a star (like size, total mass, and luminosity), and consid-
ered many of these to be fixed and unchanging. Our objective is to be able
to describe the entire internal structure of a star in terms of its fundamental
physical properties, and to model how this structure will change over time as
it evolves.

Before we define the equations that do this, there are two points that may
be useful to understand all of the notation being used here, and the way in
which these equations are expressed.

First, when describing the evolution of a star with a set of equations, we
will use mass as the fundamental variable rather than radius (as we have
mostly been doing up until this point.) It is possible to change variables in this
way because mass, like radius, increases monotonically as you go outward in
a star from its center. We thus will set up our equations so that they follow
individual, moving shells of mass in the star. There are several benefits to this.
For one, it makes the problem of following the evolution of our star a more
well-bounded problem. Over a star’s lifetime, its radius can change by orders
of magnitude from its starting value, and so a radial coordinate must always
be defined with respect to the hugely time-varying outer extent of the star.
In contrast, as our star ages, assuming its mass loss is insignificant, its mass
coordinate will always lie between zero and its starting value M — a value
which can generally be assumed to stay constant for most stars over most of
stellar evolution. Further, by following shells of mass that do not cross over
each other, we implicitly assume conservation of mass at a given time, and
the mass enclosed by any of these moving shells will stay constant as the
star evolves, even as the radius changes. This property also makes it easier to
follow compositional changes in our star.

In general, the choice to follow individual fluid parcels rather than ref-
erence a fixed positional grid is known as adopting Lagrangian coordinates
instead of Eulerian coordinates. For a Lagrangian formulation of a problem:
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• This is a particle-based description, following individual particles in a
fluid over time

• Conservation of mass and Newton’s laws apply directly to each particle
being followed

• However, following each individual particle can be computationally ex-
pensive

• This expense can be somewhat avoided for spherically-symmetric (and
thus essentially ‘1D’) problems

In contrast, for a Eulerian formulation of a problem:

• This is a field-based description, recording changes in properties at each
point on a fixed positional grid in space over time

• The grid of coordinates is not distorted by the fluid motion

• Problems approached in this way are generally less computationally ex-
pensive, and are generally easier for 2D and 3D problems

There are thus trade-offs for choosing each formulation. For stellar struc-
ture, Lagrangian coordinates are generally preferred, and we will rely heavily
on equations expressed in terms of a stellar mass variable going forward.

Second, it might be useful to just recall the difference between the two
types of derivatives that you may encounter in these equations. The first is a
partial derivative, written as ∂ f . The second is a total derivative, written as
d f . To illustrate the difference, let’s assume that f is a function of a number of
variables: f (x, t). The partial derivative of f with respect to x is just ∂ f

∂x . Here,
we have assumed in taking this derivative that x is held fixed with time and
does not vary. However, most of the quantities that we will deal with in the
equations of stellar structure do vary with time. The use of a partial derivative
with respect to radius or mass indicates that we are considering the change in
this space(like) coordinate for an instantaneous, fixed time value. In contrast,
the total derivative does not hold any variables to be fixed, and considers how
all of the dependent variables changes as a function of the variable considered.
Note that when you see a quantity like ṙ in an equation, this is actually the
partial rather than total derivative with respect to time.

15.2 Equations of Stellar Structure

In this class, we will define four fundamental equations of stellar structure,
and several additional relationships that, taken all together, will define the
structure of a star and how it evolves with time. Depending on the textbook
that you consult, you will find different versions of these equations using
slightly different variables, or in a slightly different format.
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dr

r

m(r)=Mr

dm
ρ(r)

Figure 30: An illustration of a shell with mass dm and thickness dr. The mass
enclosed inside of the shell is m(r) (or Mr, depending on how you choose to
write it). Assume that this object has a density structure ρ(r)

Mass continuity

The first two equations of stellar structure we have already seen before, as the
conversion between the mass and radius coordinates

(274)
dr
dm

=
1

4πr2ρ

and as the equation of hydrostatic equilibrium (Eq. 239), now recast in terms
of mass:

(275)
dP
dm

= − Gm
4πr4

Eq. 274 and its variant forms are known variously as the Mass Continuity
Equation or the Equation of Conservation of Mass. Either way, this is the
first of our four fundamental equations of stellar structure, and relates our
mass coordinate m to the radius coordinate r, as shown in Fig. 30.

Note that up until now we have been generally either been assuming a
uniform constant density in all of the objects we have considered, or have been
making approximations based on the average density �ρ�. However, to better
and more realistically describe stars we will want to use density distributions
that are more realistic (e.g., reaching their highest value in the center of the
star, and decreasing outward to zero at the edge of the star). This means we
should start trying to think about ρ as a function rather than a constant (even
when it is not explicitly written as ρ(r) or ρ(m) in the following equations).

Hydrostatic equilibrium

The second equation of stellar structure (Eq. 275, the equation of hydrostatic
equilibrium) concerns the motion of a star, and we derived it in Sec. 14.2. As
we noted earlier, stars can change their radii by orders of magnitude over
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the course of their evolution. As a result, we must consider how the interiors
of stars move due the forces of pressure and gravity. We have already seen
a specific case for this equation: the case in which gravity and pressure are
balanced such that there is no net acceleration, and the star is in hydrostatic
equilibrium (Equation 239).

We want to first consider a more general form of Eq. 275 that allows for the
forces to be out of balance and thus there to be a net acceleration, and second
to change variables from a dependence on radius to a dependence on mass.
We can begin by rewriting our condition of force balance in Equation 239 as

(276) 0 = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Each term in this equation has units of acceleration. Thus, this equation can
be more generally written as

(277) r̈ = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Using Equation 263 we can recast this expression in terms of a derivative
with respect to m rather than r. This gives us the final form that we will use:

(278) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

This is the most general form of our second equation of stellar structure. When
r̈ is zero we are in equilibrium and so we obtain Eq. 275, the equation of hy-
drostatic equilibrium. This more general form, Eq. 278, is sometimes referred
to as the Equation of Motion or the Equation of Momentum Conservation.

The Thermal Transport Equation

We also need to know how the temperature profile of a star changes with
depth. If we do that, we can directly connect the inferred profile of tempera-
ture vs. optical depth (Eq. 211) to a physical coordinate within the star.

Assume there is a luminosity profile (determined by the energy equation,
to be discussed next), such that the flux at radius r is

(279) F(r) =
L(r)
4πr2

In a plane-parallel atmosphere, we learned (Eq. 202) that the flux is related
to the gradient of the radiation pressure. The assumptions we made then don’t
restrict the applicability of that relation only to the outer atmosphere, so we
can apply it anywhere throughout the interior of our star. The only (minor)
adjustment is that we replace dz with dr since we are now explicitly consider-
ing a spherical geometry, so we now have

(280) F = − c
α

dPrad
dr
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Since we know that Prad = 4/3c σSBT4 (Eq. 305), we see that

(281)
dPrad

dr
=

16σSB
3c

T3 dT
dr

.

When combined with Eq. 279, we find the thermal profile equation,

(282)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

The Energy Equation

Eq. 282 shows that we need to know the luminosity profile in order to deter-
mine the thermal profile. In the outer photosphere we earlier required that
flux is conserved (Sec. 13.2), but go far enough in and all stars (until the ends
of their lives) are liberating extra energy via fusion.

Thus the next equation of stellar structure concerns the generation of en-
ergy within a star. As with the equation of motion, we will first begin with a
simple case of equilibrium. In this case, we are concerned with the thermody-
namics of the star: this is the equation for Thermal Equilibrium, or a constant
flow of heat with time for a static star (a situation in which there is no work
being done on any of our mass shells).

Consider the shell dm shown in Fig. 30. Inside of this shell we define a
quantity �m that represents the net local gain of energy per time per unit mass
(SI units of J s−1 kg−1) due to local nuclear processes. Note that sometimes
the volumetric power �r will also sometimes be used, but the power per unit
mass �m is generally the more useful form. Regardless, we expect either � to
be very large deep in the stellar core and quickly go to zero in the outer layers
where fusion is negligible – in those other regions, � = 0, L is constant, and
we are back in the flux-conserving atmosphere of Sec. 13.2.

We then consider that the energy per time entering the shell is Lr (note that
like Mr, this is now a local and internal rather than global or external property:
it can be thought of as the luminosity of the star as measured at a radius r
inside the star) and the energy per time that exits the shell is now Lr + dLr
due to this local gain from nuclear burning in the shell. To conserve energy,
we must then have (note that these are total rather than partial derivatives as
there is no variation with time):

(283)
dLr

dm
= �m.

This is the equation for Thermal Equilibrium in a star. While Thermal
Equilibrium and Hydrostatic Equilibrium are separate conditions, it is gener-
ally unlikely that a star will be in Thermal Equilibrium without already being
in Hydrostatic equilibrium, thus guaranteeing that there is no change in the
energy flow in the star with time or with work being done. In general, Ther-
mal Equilibrium and Eq. 283 require that any local energy losses in the shell
(typically from energy propagating outward in the star) are exactly balanced
by the rate of energy production in that shell due to nuclear burning. On a
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macroscopic scale, it means that the rate at which energy is produced in the
center of the star is exactly equal to the star’s luminosity: the rate at which
that energy exits the surface.

How likely is it that a star satisfies this requirement? While a star may
spend most of its life near Thermal Equilibrium while it is on the main se-
quence, most of the evolutionary stages it goes through do not satisfy Eq. 283:
for example, pre-main sequence evolution (protostars) and post-main sequence
evolution (red giants). How can we describe conservation of energy for an ob-
ject that is not in Thermal equilibrium?

Following standard texts (e.g., Prialnik), we can make use of u, the internal
energy density in a shell in our star. We can change u either by doing work
on the shell, or by having it absorb or emit heat. We have already described
how the heat in the shell can change with Lr and �m. Similarly, the incremen-
tal work done on the shell can be defined as a function of pressure and the
incremental change in volume:

dW = −PdV

(284)

= −P
�

dV
dm

dm
�(285)

= −P d
�

1
ρ

�
dm

(286)

The change in internal energy per unit mass (du) is equal to the work done
per unit mass ( dW

dm ), so finally we can rewrite Eq. 286 as:

(287) du = −Pd
�

1
ρ

�

Taking the time derivative of each side,

(288)
du
dt

= −P
d
dt

�
1
ρ

�

Compression of the shell will decrease dV, and thus require energy to be
added to the shell, while expansion increases dV and is a way to release energy
in the shell.

Changes in the internal energy of the shell u with time can then be de-
scribed in terms of the both the work done on the shell and the changes in
heat:

(289)
du
dt

= �m − ∂Lr

∂m
− P

d
dt

�
1
ρ

�

The general form of Eq. 289 is the next equation of stellar structure, known
either as the Energy Equation or the Equation of Conservation of Energy.
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You may also sometimes see this equation written in various other forms,
such as in terms of the temperature T and entropy S of the star. In this form,
you then have

(290)
∂Lr

∂m
= �m − T

dS
dt

Chemical Composition

An additional relationship that is useful for determining stellar evolution is
the change in a star’s composition.This relation will be less of an ‘equation’ for
the purposes of this class, and more a rough depiction of how the composition
of a star can vary with time.

We can define the composition of a star using a quantity called the mass
fraction of a species:

(291) Xi =
ρi
ρ

.

Here, ρi is the partial density of the ith species.
Particles in a star are defined by two properties: their baryon number A

(or the number of total protons and neutrons they contain) and their charge
Z . Using the new notation of baryon number, we can rewrite

(292) n =
ρ

m̄
,

as the corresponding partial number density of the ith species:

(293) ni =
ρi

Ai mH
.

We can then slightly rewrite our expression for the composition as

(294) Xi = ni
Ai
ρ

mH .

Changes in composition must obey (at least) two conservation laws. Con-
servation of charge:

(295) Zi +Zj = Zk +Zl .

and conservation of baryon number:

(296) Ai +Aj = Ak +Al .

If you also consider electrons, there must also be a conservation of lepton
number.
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Without attempting to go into a detailed formulation of an equation for
the rate of change of X we can see that it must depend on the starting com-
position and the density, and (though it does not explicitly appear in these
equations) the temperature, as this will also govern the rate of the nuclear
reactions responsible for the composition changes (analogous to the collision
timescale tcol =

v
nA as shown in Figure 37, in which the velocity of particles

is set by the gas temperature). This leads us to our last ‘equation’ of stellar
structure, which for us will just be a placeholder function f representing that
the change in composition is a function of these variables:

(297) Ẋ = f(ρ, T, X).

Technically, this X is a vector representing a series of equations for the
change of each Xi.

The final fundamental relation we need in order to derive the structure of
a star is an expression for the temperature gradient, which will be derived a
bit later on.

15.3 Pressure

We have already seen a relationship for the gas pressure for an ideal gas, P =
nkT. However, now that we have begun talking more about the microscopic
composition of the gas we can actually be more specific in our description
of the pressure. Assuming the interior of a star to be largely ionized, the gas
will be composed of ions (e.g., H+) and electrons. Their main interactions
(‘collisions’) that are responsible for pressure in the star will be just between
like particles, which repel each other due to their electromagnetic interaction.
As a result, we can actually separate the gas pressure into the contribution
from the ion pressure and the electron pressure:

(298) Pgas = Pe + Pion

For a pure hydrogen star, these pressures will be equivalent, however as
the metallicity of a star increases, the electron pressure will be greater than
the ion pressure, as the number of free electrons per nucleon will go up (for
example, for helium, the number of ions is half the number of electrons).

Assuming that both the ions and electrons constitute an ideal gas, we can
rewrite the ideal gas equation for each species:

(299) Pe = nekT

and

(300) Pion = nionkT
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15.3. Pressure

However, this is not the full story: there is still another source of pressure
in addition to the gas pressure that we have not been considering: the pressure
from radiation.

Considering this pressure then at last gives us the total pressure in a star:

(301) P = Pion + Pe + Prad

We can determine the radiation pressure using an expression for pressure
that involves the momentum of particles:

(302) P =
1
3

∞�

0

v p n(p) dp

Here v is the velocity of the particles responsible for the pressure, p is
their typical momentum, and n(p) is the number density of particles in the
momentum range (p, p + dp). We first substitute in values appropriate for
photons (v = c, p = hν

c ). What is n(p)? Well, we know that the Blackbody
(Planck) function (Equation 16) has units of energy per volume per interval
of frequency per steradian. So, we can turn this into number of particles per
volume per interval of momentum by (1) dividing by the typical energy of a
particle (for a photon, this is hν), then (3) multiplying by the solid angle 4π,
and finally (4) using p = E

c to convert from energy density to momentum
density.

(303) Prad =
1
3

4π

∞�

0

c
�

hν

c

��
1

hν

��
1
c

�
2hν3

c2

�
e

hν
kT − 1

�−1
dν

Putting this all together,

(304) Prad =
1
3

�
4
c

�
π

∞�

0

�
1
c

�
2hν3

c2

�
e

hν
kT − 1

�−1
dν




Here, the quantity in brackets is the same integral that is performed in
order to yield the Stefan-Boltzmann law (Equation 126). The result is then

(305) Prad =
1
3

�
4
c

�
σT4

The quantity 4σ
c is generally defined as a new constant, a.

We can also define the specific energy (the energy per unit mass) for radi-
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ation, using the relation

(306) urad = 3
Prad

ρ

When solving problems using the Virial theorem, we have encountered a
similar expression for the internal energy of an ideal gas:

(307) KEgas =
3
2

NkT

From the ideal gas law for the gas pressure (P = nkT), we can see that the
specific internal energy KE

m̄ then can be rewritten in a similar form:

(308) ugas =
Pgas

ρ

15.4 The Equation of State

In a star, an equation of state relates the pressure, density, and tempera-
ture of the gas. These quantities are generally dependent on the composition
of the gas as well. An equation of state then has the general dependence
P = P(ρ, T, X). The simplest example of this is the ideal gas equation. Inside
some stars radiation pressure will actually dominate over the gas pressure, so
perhaps our simplest plausible (yet still general) equation of state would be

P = Pgas + Prad

(309)

= nkT +
4F
3c

(310)

=
ρkT
µmp

+
4σSB

3c
T4

(311)

where µ is now the mean molecular weight per particle – e.g., µ = 1/2 for
fully ionized H.

But a more general and generally applicable equation of state is often that
of an adiabatic equation of state. As you might have encountered before in a
physics class, an adiabatic process is one that occurs in a system without any
exchange of heat with its environment. In such a thermally-isolated system,
the change in internal energy is due only to the work done on or by a system.
Unlike an isothermal process, an adiabatic process will by definition change
the temperature of the system. As an aside, we have encountered both adia-
batic and isothermal processes before, in our description of the early stages
of star formation. The initial collapse of a star (on a free-fall time scale) is a
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roughly isothermal process: the optically thin cloud is able to essentially radi-
ate all of the collapse energy into space unchecked, and the temperature does
not substantially increase. However, once the initial collapse is halted when
the star becomes optically thick, the star can only now radiate a small fraction
of its collapse energy into space at a time. It then proceeds to contract nearly
adiabatically.

Adiabatic processes follow an equation of state that is derived from the
first law of thermodynamics: for a closed system, the internal energy is equal
to the amount of heat supplied, minus the amount of work done.

As no heat is supplied, the change in the specific internal energy (energy
per unit mass) u comes from the work done by the system. We basically al-
ready derived this in Equation 287:

(312) du = −Pd
�

1
ρ

�

As we have seen both for an ideal gas and from our expression for the
radiation pressure, the specific internal energy is proportional to P

ρ :

(313) u = φ
P
ρ

Where φ is an arbitrary constant of proportionality. If we take a function
of that form and put it into Equation 312 we recover an expression for P in
terms of ρ for an adiabatic process:

(314) P ∝ ρ
φ+1

φ

We can rewrite this in terms of an adiabatic constant Ka and an adiabatic
exponent γa:

(315) P = Kaργa

For an ideal gas, γa = 5
3 .

This adiabatic relation can also be written in terms of volume:

(316) PVγa = Ka

This can be compared to the corresponding relationship for an ideal gas,
in which PV = constant.
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15.5 Summary

In summary, we have a set of coupled stellar structure equations (Eq. 274,
Eq. 278, Eq. 282, Eq. 289, and Eq. 315):

(317)
dr
dm

=
1

4πr2ρ

(318) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

(319)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

(320)
du
dt

= �m − ∂Lr

∂m
− P

d
dt

�
1
ρ

�

(321) P = Kaργa

If we can solve these together in a self-consistent way, we have good
hope of revealing the unplumbed depths of many stars. To do this we will
also need appropriate boundary conditions. Most of these are relatively self-
explanatory:

M(0) = 0
(322)

M(R) = Mtot

(323)

L(0) = 0
(324)

L(R) = 4πR2σSBT4
eff

(325)

ρ(R) = 0
(326)

P(R) ≈ 0
(327)

T(R) ≈ Teff

(328)

(329)
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15.5. Summary

To explicitly solve the equations of stellar structure even with all these con-
straints in hand is still a beast of a task. In practice one integrates numerically,
given some basic models (or tabulations) of opacity and energy generation.
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16 Stability, Instability, and Convection

Now that we have the fundamental equations of stellar structure, we would
like to examine some interesting situations in which they apply. One such
interesting regime is the transition from stable stars to instability, either in a
part of the star or throughout its interior. We will examine this by answering
the following question: if we perturb the system (or a part of it), does it settle
back into equilibrium?

16.1 Thermal stability

Suppose we briefly exceed thermal equilibrium; what happens? In equilib-
rium, the input luminosity from nuclear burning balances the energy radiated
away:

(330)
dEtot

dt
= Lnuc − Lrad = 0

If the star briefly overproduces energy, then (at least briefly) Lnuc > Lrad and
we overproduce a clump ΔE of energy. Over a star’s main-sequence lifetime
its core temperature steadily rises, so this slight imbalance is happening all the
time. Whenever it does, the star must be responding on the photon diffusion
timescale, τγ,diff ≈ 104 yr... but how?

From the virial theorem, we know that

(331) ΔE = −ΔEth =
1
2

ΔEgrav

So if nuclear processes inject an extra ΔE into the star, we know we will lose
an equivalent amount ΔE of thermal energy and simultaneously gain 2ΔE of
gravitational energy. Thus the star must have cooled, and – since its mass has
not appreciably changed –its radius must have expanded.

Of the two, the temperature change is the more relevant for thermal sta-
bility because nuclear reaction rates depend very sensitively on temperature.
For Sun-like stars, � ∝ T16 – so even a slight cooling will strongly diminish
the nuclear energy production rate and will tend to bring the star back into
thermal equilibrium. This makes sense, because stars are stable during their
slow, steady evolution on the main sequence.

16.2 Mechanical and Dynamical Stability

Suppose that a fluid element of the star is briefly pushed away from hydro-
static equilibrium; what happens? We expect the star to respond on the dy-
namical timescale, τdyn ≈ 30 min... but how?

Let’s consider a toy model of this scenario, in which we squeeze the star
slightly and see what happens. (A full analysis would require us to compute
a full eigenspectrum of near-equilibrium Navier-Stokes equations, and is def-
initely beyond the scope of our discussion here.) If we start with Eq. 275, we
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can integrate to find P(M):

P(M) =

P�

0

dP

(332)

=

M�

Mtot

dP
dM

dM

(333)

= −
M�

Mtot

GM
4πr4 dM

(334)

Initially, in equilibrium the gas pressure must be equal to the pressure re-
quired to maintain hydrostatic support – i.e., we must have Phydro = Pgas.

If we squeeze the star over a sufficiently short period of time (shorter than
the thermal diffusion timescale), heat transfer won’t occur during the squeez-
ing and so the contraction is adiabatic. If the contraction is also homologous,
then we will have

r ←→ r� = r(1 − �)

ρ ←→ ρ� = ρ(1 + 3�)

How will the star’s pressure respond? Since the contraction was suffi-
ciently rapid, we have an adiabatic equation of state

(335) P ∝ ργad ,

where

(336) γad ≡ cP
cV

where cP and cV are the heat capacities at constant pressure and volume, re-
spectively. Statistical mechanics shows that we have γad = 5/3 for an ideal
monoatomic gas, and 4/3 for photon radiation (or a fully relativistic, degen-
erate gas).

Thus our perturbed star will have a new internal gas pressure profile,

P�
gas = Pgas(1 + 3�)γad

(337)

≈ Pgas(1 + 3γad�)
(338)

Will this new gas pressure be enough to maintain hydrostatic support of
the star? To avoid collapse, we need Pgas > Phydro always. We know from
Eq. 334 that the new hydrostatic pressure required to maintain equilibrium
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will be

P�
hydro = −

M�

Mtot

GM
4π(r�)4 dM

(339)

= −(1 + 4�)

M�

Mtot

GM
4πr4 dM

(340)

= (1 + 4�)Phydro

(341)

Thus our small perturbation may push us out of equilibrium! The new
pressures are in the ratio

(342)
P�

gas

P�
hydro

≈ 1 + 3γad�

1 + 4�

and so the star will only remain in equilibrium so long as

(343) γad >
4
3

This is pretty close; a more rigorous treatment of the same question yields

(344)
M�

0

�
γad −

4
3

�
P
ρ

dM > 0.

Regardless of the exact details, Eqs. 343 and 344 indicate that a star comes
ever closer to collapse as it becomes more fully supported by relativistic par-
ticles (whether photon radiation, or a relativistic, degenerate gas).

The course reading from Sec. 3.6 of Prialnik shows another possible source
of instability, namely via partial ionization of the star. γad can also drop below
4/3, thus also leading to collapse, via the reaction H←→ H+ + e− .

In this reaction, both cv and cP change because added heat can go into ion-
ization rather then into increasing the temperature. cv changes more rapidly
than cP, so γad gets smaller (as low as 1.2 or so). Qualitatively speaking, a
stellar contraction reverses some of the ionization, reducing the number of
particles and also reducing the pressure opposing the initial squeeze. As in
the relativistic support case, when γad ≤ 4/3, the result is instability.

16.3 Convection

Not all structural instabilities lead to stellar collapse. One of the most common
instabilities is almost ubiquitous in the vast majority of stars: convection. Con-
vection is easily visualized by bringing a pot of water to a boil, and dropping
in dark beans, rice grains, or other trace particles. We will now show how the
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16.3. Convection

same situation occurs inside of stars.

Convection is one of several dominant modes of energy transport inside of
stars. Up until now, we have considered energy transport only by radiation,
as described by Eq. 282,

(345)
dT
dr

= − 3ρκL(r)
64πσSBT3r2 .

In a few cases energy can also be transported directly by conduction, which is
important in the dense, degenerate white dwarfs and neutron stars. Whereas
radiation transports heat via photon motions and conduction transports heat
through microscopic particle motion, convection transports heat via bulk mo-
tions of large parcels of gas or fluid.

When a blob of stellar material is pushed upwards by some internal per-
turbation, how does it respond: will it sink back down, or continue to rise?
Again, a consideration of different timescales is highly relevant here. An out-
ward motion typically corresponds to a drop in both pressure and tempera-
ture. The pressure will equilibrate on τdyn ≈ 30 min, while heat will flow on
the much slower τγ,di f f ≈ 104 yr. So the motion is approximately adiabatic,
and a rising blob will transport heat from the lower layers of the star into the
outer layers.

The fluid parcel begins at r with some initial conditions P(r), ρ(r), and
T(r). After moving outward to (r + dr) the parcel’s temperature will remain
unchanged even as the pressure rapidly equilibrates, so that the new pressure
P�(r + dr) = P(r + dr). Meanwhile (as in the previous sections) we will have
an adiabatic equation of state (Eq. 335), which determines the parcel’s new
density ρ�.

The gas parcel will be stable to this radial perturbation so long as ρ� >
ρ(r + dr). Otherwise, if the parcel is less dense than its surroundings, it will
be like a child’s helium balloon and continue to rise: instability! A full analysis
shows that this stability requirement can be restated in terms of P and ρ as

�
dP/dr
dρ/dr

�
<

dP
dρ

|adiabatic

(346)

< γad
P
ρ

.

(347)

Since dP/dr and dρ/dr are both negative quantities, this can be rearranged as

(348)
ρ

γadP
dP
dr

>
dρ

dr
.

If we also assume that the stellar material is approximately an ideal gas, then
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P = ρkT/µmp and so

(349)
����
dT
dr

���� <
T
P

����
dP
dr

����
�

1 − 1
γad

�

Eq. 349 is the Schwarzschild stability criterion against convection. The
absolute magnitudes are not strictly necessary, but can help to mentally parse
the criterion: as long as the thermal profile is shallower than the modified
pressure profile, the star will remain stable to radial perturbations of material.

Modeling convection

Fully self-consistent models of stellar convection are an active area of research
and require considerable computational resources to accurately capture the
three-dimensional fluid dynamics. The simplest model of convection is to as-
sume that the process is highly efficient – so much so that it drives the system
to saturate the Schwarzschild criterion, and so

(350)
dT
dr

=
T
P

dP
dr

�
1 − 1

γad

�

The somewhat ad hoc, but long-tested, framework of mixing length the-
ory (MLT) allows us to refine our understanding of convection. In MLT one
assumes that gas parcels rise some standard length �, deliver their heat there,
and sink again. Accurately estimating � can be as much art as science; at least
for nearly Solar stars, � can be calibrated against a host of other observations.

Another way to understand convection comes from examining the relevant
equations of stellar structure. Since the star is unstable to convection when
the thermal profile becomes too steep, let’s consider the thermal transport
equation:

(351)
dT
dr

= − 3
64π

ρκ

σSBT3
L
r2

Convection may occur either when |dT/dr| is especially large, or when the
Schwarzschild criterion’s factor of (1 − 1/γad) is especially small:

1. Large κ and/or low T: sometimes met in the outer layers (of Sun-like
stars);

2. Large F ≡ L/r2: potentially satisfied near cores

3. Small γad: near ionization layers and molecular dissociation layers.

Overall, we usually see convection across a range of stellar types. Descend-
ing along the main sequence, energy transport in the hottest (and most mas-
sive) stars is dominated by radiation. Stars of somewhat lower mass (but still
with M∗ > M�) will retain radiative outer atmospheres but acquire interior
convective regions. By the time one considers stars of roughly Solar mass,
we see a convective exterior that surrounds an internal radiative core. Many
years of Solar observations shows the outer surface of the Sun bubbling away,
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just like a boiling pot. Large, more evolved stars (e.g., red giants) also have
convective outer layers; in these cases, the size of the convective cells � � R�!

As one considers still lower masses along the main sequence, the convec-
tion region deepens; below spectral types of M2V-M3V, the stars become fully
convective — i.e., � = R∗. The Gaia DR2 color-magnitude diagram shows a
narrow break in the main sequence which is interpreted as a direct observa-
tional signature of the onset of full convection for these smallest, coolest stars.
These stars therefore have a fully adiabatic equation of state throughout their
interior.

16.4 Another look at convection vs. radiative transport

Again, we already know that radiative transport is the default mechanism for
getting energy from a star’s center to its surface. However, it turns out that
within a star, a second mechanism can take over from radiative transport and
become dominant. To understand when this happens, we need to bring back
two concepts we have previously discussed.

First, we have the temperature gradient. We will use the version that de-
fines the temperature change as a function of radius:

(352)
dT
dr

= − 3
4ac

κρ

T3
Lr

4πr2

Second, we have the definition of an adiabatic process: a process in which no
heat is exchanged between a system and its environment.

Again, we begin by considering a blob of gas somewhere within a star. It
has a temperature Tblob and is surrounded by gas at an ambient, local tem-
perature T∗. At this point, they are in thermal equilibrium so that Tblob = T∗.
What happens if this blob is given a quick nudge upward so that now it is
warmer than the gas around it: Tblob > T∗? Just as warm air does, we expect
that it will rise. In order for the blob to stop rising, it must become cooler than
its environment.

There are two ways for our blob to cool. One way is for it to radiate (that
is, exchange heat with its environment). The other way is for it to do work on
its environment (essentially, to expand in order to reach pressure equilibrium
with its surroundings). Which one is going to be more effective in a star? To
answer this, we can just look at time scales. Heat exchange will occur on a
roughly thermal (or Kelvin-Helmholtz) time scale. For the sun, this time scale
is on the order of ten million years. In contrast, work can be done on the blob’s
environment on a dynamical time scale (technically, the sound-crossing time
scale, as this work is done by the expansion of the blob due to pressure). For
the sun, this time scale is only about 30 minutes. The enormous difference
in magnitude of these scales suggests that there will be almost no chance for
the blob to exchange heat with its environment over the time scale in which
it expands to reach pressure equilibrium with its environment: our blob will
expand and cool nearly entirely adiabatically.

Once the blob has expanded enough to cool down to the ambient temper-
ature, it will cease its upward motion and become stable again. The question
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16. Stability, Instability, and Convection

is: how quickly will this happen? If an overly warm blob can quickly become
cooler than the surrounding gas, then it will not travel far, and upward gas
motions will be swiftly damped out. As the gas does not then move in bulk,
energy in the star is transported just through the radiation field. However, if
the blob cannot quickly become cooler than the ambient gas, it will rise and
rise until it encounters a region where it finally satisfies this criterion. This
sets up a convective zone in the star: an unstable situation that results in sig-
nificant movement of gas in the star (think of a pot of water boiling). Warm
gas travels upward through this region and eventually reaches the top of the
convective zone (which could be the surface of the star, or a region inside the
star where the physical conditions have changed significantly) where it is able
to cool and return downward. Through the work that it does on its environ-
ment over this journey, it carries significant energy from the inner to the outer
regions of the star. For this ‘convective’ zone of the star (which could be a
small region or the entire star) convective transport is then the primary means
by which energy is transported.

To determine whether convection will dominate, we compare the temper-
ature gradient of the star (the ambient change in temperature as a function
of radius) and the rate at which a parcel of gas will cool adiabatically (the
so-called adiabatic temperature gradient). These are shown visually in Figure
31 for both convective stability and instability.

If the adiabatic temperature gradient is steeper than the temperature gra-
dient in a star (as set by purely radiative energy transport) then the rate at
which a blob of gas will rise and expand and cool will be more rapid than the
rate at which the ambient gas in the star cools over the same distance. As a
result, if a blob experiences a small displacement upward, it will very quickly
become cooler than its surroundings, and sink back to its original position. No
significant motion or convection will occur (this region is convectively stable)
and the star will continue to transport energy radiatively.

However, if the adiabatic temperature gradient is shallower than the (ra-
diative) temperature gradient in a star, then the rate at which a parcel of gas
expands and cools as it rises will be slower than the rate at which the sur-
rounding gas of the star cools over the same distance. Because of this, if a
blob is displaced upward, it will remain hotter than its surroundings after
it adiabatically expands to reach pressure equilibrium with its surroundings,
and it will continue to rise. This sets up convection in the star: as long as the
adiabatic temperature gradient is shallower than the radiative temperature
gradient, the blob will rise. Only when the blob reaches an area of the star
with different physics (such that the temperature gradient becomes shallower
than the adiabatic gradient) will it stop rising. The region in which

(353)
�

dT
dr

�

ad
<

�
dT
dr

�

∗

defines the convective zone and the region in which convection dominates the
energy transport.

Convection can then be favored in several ways. One way is through mak-
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Convective instability
The adiabatic temperature 
gradient is shallower than the 
ambient temperature gradient

Stability
The adiabatic temperature 
gradient is steeper than the 
ambient temperature gradient

dTad
dr

dTad
dr

Figure 31: Left: An illustration of convective instability in a star. The ambient
(background) temperature gradient, set by radiative transport of energy in the
star, is steeper than the rate at which a parcel of gas can cool adiabatically. Be-
cause of this, a parcel of gas that becomes slightly warmer than the gas around
it will rise uncontrollably, resulting in convection, which then is responsible
for transporting energy in that region of the star. Right: An illustration of a
stable situation. The ambient (background) temperature gradient, is shallower
than the rate at which a parcel of gas can cool adiabatically. Because of this,
a parcel of gas that becomes slightly warmer than the gas around it will very
quickly become cooler than the gas around it, and will not rise significantly.
In this situation, radiative energy transport dominates.

ing the adiabatic temperature gradient more shallow (this is set by the equa-
tion of state for the gas, and requires a deviation from the ideal gas law that
lowers the adiabatic exponent). While this can and does occur, it is beyond the
scope of this class, so we will not consider this in more detail. Alternatively
then, we can ask what causes the temperature gradient of a star to steepen?
Looking at Equation 352, we can see that the temperature gradient in a star is
proportional to a number of variables, including the opacity κ and the energy
flux Lr. Regions of high opacity are in fact a significant cause of convective
zones in stars. As we saw in Section 11.1, many of the processes that cause
opacity in stars favor conditions in which there are bound electrons. This will
occur in cooler regions of a star, particularly in regions where the gas (Hy-
drogen or Helium) is only partially ionized. In fact, partially ionized gas also
has a slightly lower adiabatic exponent than fully ionized gas, which further
contributes to the development of convective instability. The sun’s outer lay-
ers are convective for these reasons (its core is radiative, as this region is fully
ionized). Cooler stars like red dwarfs are actually fully convective from their
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16. Stability, Instability, and Convection

core to surface. As we will discuss further when we reach the topic of nuclear
burning in stars, nuclear processes that release substantial amounts of energy
can significantly increase Lr and thus also drive convection. This is the reason
that stars more massive than the sun (which have a slightly different fusion
reaction occurring) have convective cores.

Note that in defining convective instability we can also swap variables,
and instead of temperature, consider the density and pressure of the blob (as
both of these are connected to the temperature through our equation of state
(the ideal gas equation, which is a good description of the conditions in the
interior of stars). This approach is taken by Prialnik, and is the basis of the
historical argument first made by Karl Schwarzschild in evaluating the con-
vective stability of stars. Here, we assume that we have a blob that has pres-
sure and density equal to the ambient values in the surrounding gas. When
it is displaced upward, its pressure now exceeds the ambient pressure, and
it expands adiabatically to reach pressure equilibrium with its surroundings.
In expanding, not only has its pressure decreased, but its density as well. If
the blob is now less dense than its surroundings, it will experiences a force
that will displace it upward. However, if the blob remains more dense than its
surroundings, it will instead experience a downward displacement force. This
argument is in a sense more physical, as we are not appealing to ‘warm air ris-
ing’ but rather the underlying physical mechanism: the Archimedes buoyancy
law. Using these variables, our condition for convective instability is now

(354)
�

dP
dr

�

ad
<

�
dP
dr

�

∗
.

All of this actually has an interesting application not just to stars, but to
earth’s atmosphere as well: the formation of thunderstorms! The formation of
extremely tall (up to 12 miles!) clouds that lead to severe thunderstorms and
tornadoes are driven by a convective instability in earth’s lower atmosphere.
The conditions that lead to this convective instability can be measured, and
factor into forecasts of severe weather outbreaks. The criterion for convective
instability is exactly the same as we just discussed for stars: the adiabatic
temperature gradient, or the rate at which a parcel of gas displaced from
ground level will cool as it rises, must be less than the temperature gradient
(or profile) of the atmosphere:

(355)
�

dT
dr

�

ad
<

�
dT
dr

�

atm

The conditions that lead to thunderstorms have two things going on that
make this more likely. First, weather systems that lead to thunderstorms are
typically driven by the approach of a cold air mass (a cold front) that is push-
ing like a wedge into the upper atmosphere. This steepens the temperature
gradient of the atmosphere: problem #1. The second thing that happens in ad-
vance of these weather systems is the buildup of a moist air mass in advance
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of the cold front, which drives high humidity. As you may have experienced
firsthand (think of how quickly it gets cold at night in the desert, or alterna-
tively, how warm a humid summer night can be, and how hard it is to stay
cool on a humid day) air with a high moisture content is better at retaining
heat, and thus cools more slowly. In essence, it has a shallower adiabatic tem-
perature gradient: problem #2. Together, these two conditions are a recipe for
strong convection. Humid air that is heated near the sunbaked ground will
dramatically rise, unchecked, into the upper atmosphere, depositing energy
and water vapor to make enormous, powerful cumulonimbus (thunderhead)
clouds. The strength of the convection is measured by meteorologists with the
CAPE (Convective Available Potential Energy) index. It measures this temper-
ature differential, and uses it to determine how strong the upward buoyancy
force will be. An extremely large CAPE for a given region could be a reason
to issue a tornado watch.

16.5 XXXX – extra material on convection in handwritten notes
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17 Polytropes

Much of the challenge in making self-consistent stellar models comes from
the connection between T and L. The set of so-called polytrope models derives
from assuming that we can just ignore the thermal and luminosity equations
of stellar structure. This assumption is usually wrong, but it is accurate in
some cases, useful in others, and historically was essential for making early
progress toward understanding stellar interiors. A polytrope model assumes
that for some proportionality constant K and index γ (or equivalently, n),

P = Kργ

(356)

= Kρ1+1/n
(357)

We have already discussed at least two types of stars for which a polytrope
is an accurate model. For fully convective stars, energy transport is domi-
nated by bulk motions which are essentially adiabatic (since τdyn�τγ,diff); thus
γ = γad = 5/3. It turns out that the same index also holds for degenerate ob-
jects (white dwarfs and neutron stars); in the non-relativistic limit these also
have γ = 5/3, even though heat transport is dominated by conduction not
convection. When degenerate interiors become fully relativistic, γ approaches
4/3 and (as we saw previously) the stars can come perilously close to global
instability.

The key equation in polytrope models is that of hydrostatic equilibrium
(Eq. 239),

dP
dr

= −GM
r2 ρ

which when rearranged yields

(358)
r2

ρ

dP
dr

= −GM.

Taking the derivative of each side, we have

(359)
d
dr

�
r2

ρ

dP
dr

�
= −GdM,

and substituting in the mass-radius equation (Eq. 274) for dM gives

(360)
1
r2

d
dr

�
r2

ρ

dP
dr

�
= −4πGρ.

It is then customary to define the density in terms of a dimensionless
density function φ(r), such that

(361) ρ(r) = ρcφ(r)n
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and n is the polytrope index of Eq. 17. Note that φ(r = R) = 0 defines the
stellar surface. In the interior, φ(r = 0) = 1, so ρc is the density at the center
of the star. This can be determined by calculating M∗ via

(362)
�

ρ(r)dV = M∗

and then solving for ρc.

Combining Eq. 361 with Eq. 17 above gives

(363) P(r) = Kρ1+1/n
c φ(r)n+1 = PCφn+1.

Plugging this back into Eq. 360 and rearranging yields the formidable-looking

(364) λ2 1
r2

d
dr

�
r2 dφ

dr

�
= −φn

where we have defined

(365) λ =

�
K(n + 1)ρ1/n−1

c
4πG

�1/2

.

When one also then defines

(366) r = λξ,

then we finally obtain the famous Lane-Emden Equation

(367)
1
ξ2

d
dξ

�
ξ2 dφ

dξ

�
= −φn.

The solutions to the Lane-Emden equation are the set of functions φ(ξ),
each of which corresponds to a different index n and each of which com-
pletely specifies a star’s density profile in the polytrope model via Eq. 361.
The solution for a given n is conventionally denoted φn(ξ). Each solution also
determines the temperature profile T(r).

What are the relevant boundary conditions for φ(ξ), and what are the pos-
sible values of this dimensionless ξ anyway? Well, just as with φ(r) we must
also have that φ(ξ = 0) = 1, and analogously we will have φ(ξ = ξsurf) = 0.
As for ξsurf (the value of ξ at the stellar surface), its value will depend on the
particular form of the solution, φ(ξ). A final, useful boundary condition is
that we have no cusp in the central density profile – i.e., the density will be a
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smooth function from r = +� to −�. So our boundary conditions are thus

φ(ξ = 0) = 1

(368)

φ(ξ = ξsurf) = 0
(369)

dφ

dξ
|ξ=0 = 0

(370)

Just three analytic forms of φ(ξ) exist, corresponding to n = 0, 1, 5. So-
lutions give finite stellar mass only for n ≤ 5. Textbooks on stellar interiors
give examples of these various solutions. One example is n = 1, for which the
solution is

(371) φ1(ξ) = a0
sin ξ

ξ
+ a1

cos ξ

ξ

where a0 and a1 are determined by the boundary conditions. A quick com-
parison to those conditions, above, shows that the solution is

(372) φ1(ξ) =
sin ξ

ξ

which is the well-known sinc function. For a reasonable stellar model in which
ρ only decreases with increasing r, this also tells us that for n = 1, ξsurf = π.

The point of this dense thicket of φ’s and ξ’s is that once n is specified, you
only have to solve the Lane-Emden equation once. (And this has already been
done – Fig. 32 shows the solutions for n = 0 to 5.) Merely by scaling K and ρc
one then obtains an entire family of stellar structure models for each φn – each
model in the family has its own central density and total mass, even though
the structure of all models in the family (i.e., for each n) are homologously
related.

For example, for n = 1 and a star with R∗ = R�, the definition of ξ means
that ξsurf = π = λR�. If we found the central density ρc using the known
stellar mass M∗ and Eq. 362, then we will have everything we need to find K
(via Eq. 365) and so find a full expression for the pressure profile (via Eq. 363)
and the associated density profile (via Eq. ).

The thermal profile T(r) can then also be determined by assuming that the
stellar interior is an ideal gas with

(373) P = nkT =
ρkT
µmp

.

A superficial examination here seems to imply that despite our initial poly-
tropic assumption that P ∝ ρ1+1/n, we instead have P ∝ ρ (independent of n).
The ‘solution’ to this quandry is to recognize that of course T is not constant
throughout the star, but is also varying with r. Given our expression for ρ(r)
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Figure 32: Solutions to the Lane-Emden Equation, here denoted by θ instead
of φ, for n = 0 (most concentrated) to 5 (least concentrated). The applicability
of each curve to stellar interiors ends at the curve’s first zero-crossing. Figure
from Wikipedia, used under a Creative Commons CCO 1.0 license.

in Eq. 361, we then have

(374) P = ρcφn kBT
µmp

= Kρ1+1/n
c φn+1

and so we then have

(375) T =
Kµmp

kB
ρ1/n

c φ.

So T ∝ φ, ρ ∝ φn, and P ∝ φn+1. It would be an interesting exercise to use
these relations to calculate the explicit thermal profile of a polytropic model...
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