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C H A P T E R  FOUR 

 (CAPACITANCE AND CAPACITORS)  

 
         Consider two conductor’s carrying charges of equal magnitude but of 

opposite sign. Such a combination of two conductors is called a capacitor. 
The conductors are called plates. 

 
*The capacitance C of a capacitor is the ratio of the magnitude of the 

charge on either conductor to the magnitude of the potential difference 
between them: 
 

   
 

  
 

 
Note that by definition capacitance is always a positive quantity 
 
we see that capacitance has SI units of coulombs per volt. The SI unit of 
capacitance is the farad (F), which was named in honor of Michael 
Faraday: 

 
The farad is a very large unit of capacitance. In practice, typical devices 
have capacitances ranging from microfarads (10

-6
 F) to picofarads (10

-12
 F). 

 
CALCULATING CAPACITANCE 

          We can calculate the capacitance of a pair of oppositely charged 
conductors, We assume a charge of magnitude Q , and we calculate the 

potential difference, We then use the expression C=Q/∆ Vto evaluate the 
capacitance 
 
*We can calculate the capacitance of an isolated spherical conductor of 
radius R and charge Q if we assume that the second conductor making up 
the capacitor is a concentric hollow sphere of infinite radius. The electric 
potential of the sphere of radius R is simply k Q /R, and setting V=0 at 

infinity as usual, we have 
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This expression shows that the capacitance of an isolated charged sphere 
is proportional to its radius and is independent of both the charge on the 
sphere and the potential difference. 
 
*The capacitance of a pair of conductors depends on the geometry of the 
conductors. Let us illustrate this with three familiar geometries, namely, 
parallel plates, concentric cylinders, and concentric spheres. In these 
examples, we assume that the charged conductors are separated by a 
vacuum. 
 
Parallel-Plate Capacitors 
The value of the electric field between the plates is 

 
Because the field between the plates is uniform, the magnitude of the 
potential difference between the plates equals Ed; therefore, 

 

 
Therefore the capacitance is 
 

            → (4.1) 
 
The capacitance of a parallel-plate capacitor is proportional to the 
area of its plates and inversely proportional to the plate separation   
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EXAMPLE 4.1:- A parallel-plate capacitor has an area A =2.00 X10

-4
 m

2 

and a plate separation d=1.00 mm. Find its capacitance.  
 
Solution from Equation 4.1, we find that 

 

  
 
Exercise What is the capacitance for a plate separation of 3.00 mm? 
 
EXAMPLE 4.2:- A solid cylindrical conductor of radius a and charge Q is 
Coaxial with a cylindrical shell of negligible thickness, radius b< a and 
charge -Q (Fig. 4.1a). Find the capacitance of this cylindrical capacitor if its 
length is L. 
 
Solution:-   If we assume that L is much greater than a and b, we can 

Neglect end effects. In this case, the electric field is perpendicular to the 
long axis of the cylinders and is confined to the region between them (Fig. 
4.1b). We must first calculate the potential difference between the two 
cylinders, which is given in general by: 
 

 
where E is the electric field in the region  a >r> b In Chapter 2, we showed 
using Gauss’s law that the magnitude of the electric field of a cylindrical 
charge distribution having linear charge density λ is Er = 2kλ/r. 

 
 

 
using the fact that we obtain λ=Q\L 
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we see that the capacitance per unit length of a combination of concentric 
cylindrical conductors is 

 
 
 

 
 
 
Figure 4.1 (a) A cylindrical capacitor consists of a solid cylindrical conductor of radius a and 
length L surrounded by a coaxial cylindrical shell of radius b. (b) End view. The dashed line 
represents the end of the cylindrical Gaussian surface of radius r and length L. 
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EXAMPLE 4.3:-A spherical capacitor consists of a spherical conducting 
shell of radius b and charge-Q concentric with a smaller conducting 
Sphere of radius a and charge Q (Fig. 4.2). Find the capacitance of this 
device. 
 
Solution As we showed in Chapter 2, the field outside a spherically 
symmetric charge distribution is given by the expression k Q /r 

2
. In this 

case, this result applies to the field between the spheres (a >r > b). From 

Gauss’s law we see that only the inner sphere contributes to this field. 
Thus, the potential difference between the spheres is 

 
 
Substituting this value for ∆V into Equation 4.1, we obtain 

 
 
 
Figure 4.2 A spherical capacitor consists of an inner sphere of 
radius a surrounded by a concentric spherical shell of radius b. 
The electric field between the spheres is directed radially 
outward when the inner sphere is positively charged. 
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COMBINATIONS OF CAPACITORS: 
 
-Parallel Combination 

       Two capacitors connected as shown in Figure 4.3a are known as a 

parallel combination of capacitors. The individual potential differences 

across capacitors connected in parallel are all the same and are equal 

to the potential difference applied across the combination. 

 

 
 
 
Figure 4.3 (a) A parallel combination of two capacitors in an electric circuit in which the potential 
difference across the battery terminals is ∆V. (b) The circuit diagram for the parallel 
combination. (c) The equivalent capacitance is Ceq = C1 + C2 . 
 

 
The total charge Q stored by the two capacitors is: 

(4.2) 
That is, the total charge on capacitors connected in parallel is the sum 
of the charges on the individual capacitors. Because the voltages 
across the capacitors are the same, the charges that they carry are 

 

 
Suppose that we wish to replace these two capacitors by one equivalent 
capacitor having a capacitance Ceq , as shown in Figure 4.3c. The effect 
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this equivalent capacitor has on the circuit must be exactly the same as the 
effect of the combination of the two individual capacitors.  

 

 
Substituting these three relationships for charge into Equation 4.2, we 
have 
 

 
 

 (parallel combination) 

 
If we extend this treatment to three or more capacitors connected in 
parallel, we find the equivalent capacitance to be 

 

 
 

Thus, the equivalent capacitance of a parallel combination of capacitors is 
Greater than any of the individual capacitances. 
 

-Series Combination:- 
         Two capacitors connected as shown in Figure 4.4a are known as a 

series combination of capacitors. 

 
 
Figure 4.4 (a) A series combination of two capacitors. The charges on the two capacitors are 
the same. (b) The capacitors replaced by a single equivalent capacitor.  
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the charges on capacitors connected in series are the same. 
 

From Figure 26.9a, we see that the voltage ∆V across the battery terminals 
is split between the two capacitors: 

 
where ∆V1 and ∆V2 are the potential differences across capacitors C1 and 
C2 , respectively. In general, the total potential difference across any 

number of capacitors connected in series is the sum of the potential 
differences across the individual capacitors. 

 
Because we can apply the expression Q = C ∆V to each capacitor shown in 
Figure 4.4a, the potential difference across each is 
 
 

 
 

Therefore     
 

   
 

 

 
Canceling Q , we arrive at the relationship 

 

 
 
When this analysis is applied to three or more capacitors connected in 
series, the relationship for the equivalent capacitance is 
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EXAMPLE 4.4:- Find the equivalent capacitance between a and b for the 

combination of capacitors shown in Figure 4.5a. All capacitances are in 
microfarads. 
Solution:-The 1.0µF and 3.0µF capacitors are in parallel and combine 
according to the expression Ceq = C1 +C2 =4.0 µF. The 2.0µF and 6.0µF 

capacitors also are in parallel and have an equivalent capacitance of 8.0 
µF. Thus, the upper branch in Figure 4.5b consists of two 4.0µF capacitors 
in series, which combine as follows: 
 

 
 

 

 
 

Figure 4.5 To find the equivalent capacitance of the capacitors in part (a), 

we reduce the various combinations in steps as indicated in parts (b), (c), 
and (d), using the series and parallel rules described in the text. 

 
        The lower branch in Figure 4.5b consists of two 8.0 µF capacitors in 
series, which combine to yield an equivalent capacitance of 4. µF. Finally, 
the 2.0 µF and 4.0 µF capacitors in Figure 26.10c are in parallel and thus 
have an equivalent capacitance of 6.0 µF. 
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Note:- 
 

1-Energy stored in a charged capacitor is  

 
2-Energy stored in a parallel-plate capacitor is 

 
3- Energy density in an electric field is 
 

 
 
 
 
 
 
 
 

 


