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C H A P T E R THREE (Electric Potential) 

 

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL 
The potential energy of the charge–field system is decreased by an amount  
(dU = -q0E.ds).  For a finite displacement of the charge from a point A to a 
point B, the change in potential energy of the system ∆U =UB - UA is 

       (3.1)   
Because the force q0E is conservative, this line integral does not depend 
on the path taken from A to B. 

 
The potential energy per unit charge U/q0 is independent of the value of q0 
and has a unique value at every point in an electric field. This quantity U/q0 

is called the electric potential (or simply the potential) V. Thus, the electric 

potential at any point in an electric field is 
V =U/q0                    (3.2) 

 
The potential difference ∆V = VB -VA between any two points A and B in an 

electric field is defined as the change in potential energy of the system 
divided by the test charge q0 : 

               (3.3) 
the potential difference is proportional to the change in potential energy, 
and we see from Equation 3.3  

∆U =q0∆V 

 
-Electric potential is a scalar characteristic of an electric field, 
independent of the charges that may be placed in the field.  
 
-The electric potential at an arbitrary point in an electric field equals 
the work required per unit charge to bring a positive test charge from 
infinity to that point.  
 
Thus, if we take point A in Equation 3.3 to be at infinity, the electric 
potential at any point P is 
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Vp = - ∫  E. ds               (3.4) 
 
In reality, Vp represents the potential difference ∆V between the point P and 
a point at infinity. Because electric potential is a measure of potential 
energy per unit charge, the SI unit of both electric potential and potential 
difference is joules per coulomb, which is defined as a volt (V): 
That is, 1 J of work must be done to move a 1C charge through a potential 
difference of 1 V. 

1 V= 1 
  

 
 

Equation 3.3 shows that potential difference also has units of electric field 
times distance. From this, it follows that the SI unit of electric field (N/C) 
can also be expressed in volts per meter: 

1 
 

 
 =1 

  

 
 

 
Because 1 V =1 J/C and because the fundamental charge is 
approximately1.6 x10

-19
 C the electron volt is related to the joule as follows: 

 
1 eV =1.60 x10

-19
 C.V =1.60 x10

-19
 J 

 
 
POTENTIAL DIFFERENCES IN A UNIFORM ELECTRIC FIELD 
Consider a uniform electric field directed along the negative y axis, as 
shown in Figure 3.1. Let us calculate the potential difference between two 
points A and B separated by a distance d, where d is measured parallel to 
the field lines. Equation 3.3 gives  
 

 
 
Because E is constant, we can remove it from the integral sign; this gives 
 

→(3.6) (Potential difference in a uniform electric field) 

 

The minus sign indicates that point B is at a lower electric potential than 
point A; that is VB > VA. 
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 Electric field lines always point in the direction of decreasing electric 
potential, as shown in Figure 3.1a.  
 
Now suppose that a test charge q0 moves from A to B. We can calculate 

the change in its potential energy from Equations 3.3 and 3.6: 
 

∆U = q0∆V = - q0E d  →(3.7)         
 

 
 
 
Figure 3.1 When the electric field E is directed downward, point B is at a lower electric potential 
than point A. Apositive test charge that moves from point A to point B loses electric potential 
energy.  
 

Note 
1- A positive charge loses electric potential energy when it moves in 
the direction of the electric field 
2- As the charged particle gains kinetic energy, it loses an equal 
amount of potential energy. 
3- A negative charge gains electric potential energy when it moves in 
the direction of the electric field 
4- The name equipotential surface is given to any surface consisting 
of a continuous distribution of points having the same electric 
potential.   
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EXAMPLE 3.1:- A 12-V battery is connected between two parallel plates, 
as shown in Figure 3.2. The separation between the plates is d = 0.30 cm, 

and we assume the electric field between the plates to be uniform. Find the 
magnitude of the electric field between the plates. 
 
Solution: The magnitude of the electric field between the plates is, from 
Equation 3.6, 
 

E= 
            

 
= 

     

        
= 4.0x10

3
 V/m 

 
This configuration, which is shown in Figure  3.2 and called a parallel-plate 
capacitor. 

 
 
 
 
Figure 3.2 A 12-V battery connected to two parallel plates. 
The electric field between the plates has a magnitude given by 
the potential difference ∆V divided by the plate separation d. 

 

 
 
 
EXAMPLE 3.2:- A proton is released from rest in a uniform electric field 
that has a magnitude of 8.0 X10

4
 V/m and is directed along the positive x 

axis (Fig. 3.3). The proton undergoes a displacement of 0.50 m in the 
direction of E. (a) Find the change in electric potential between points A 
and B. 
Solution Because the proton (which, as you remember, carries a positive 
charge) moves in the direction of the field, we expect it to move to a 
position of lower electric potential. From Equation 3.6, we have 
 

∆V =-Ed =-(8.0 x10
4
 V/m)(0.50 m) 

 =-4x10
4
V 
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(b) Find the change in potential energy of the proton for this displacement. 
 
Solution:- 
 

∆U = q0∆V =e∆V 
     =(1.6x10

-19
C)(- 4X10

4
V) 

     = -6.4X10
-15

J 
 
The negative sign means the potential energy of the proton decreases as it 
moves in the direction of the electric field.  
 
 
 
 
 
 
Figure 3.3 A proton accelerates from A to  B in 
the direction of the electric field.        
 

 

 
 
 
 
ELECTRIC POTENTIAL AND POTENTIAL ENERGY DUE TO POINT 
CHARGES 
Consider an isolated positive point charge q. To find the electric potential at 
a point located a distance r from the charge 
 

VB -VA = - ∫  E.ds 
where A and B are the two arbitrary points .At any field point, the electric 

field due to the point charge is E = ke qrˆ/r
2 

where rˆ is a unit vector directed 
from the charge toward the field point. The quantity E.ds can be expressed 
as  

E.ds = ke 
  

  
 rˆ.ds 

Because the magnitude of rˆ is 1, the dot product  rˆ.ds=ds cosθ  where θ  
is the angle between  rˆ and ds. thus, ds cosθ =dr. That is, any 
displacement ds along the path from point A to point B produces a change 
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dr in the magnitude of r. Making these substitutions, we find that hence, the 
expression for the potential difference becomes 

→(3.10) 

 
The integral of E.ds is independent of the path between points A and B—as 

it must be because the electric field of a point charge is conservative.  
 
-The electric potential created by a point charge at any distance r from the 
charge is 

V= keq/r   →(3.11) 
For a group of point charges, we can write the total electric potential at P in 

the form ( Electric potential due to several point charges) 

  →(3.12) 
where the potential is again taken to be zero at infinity and ri is the distance 
from the point P to the charge qi . 
 
 
we can express the potential energy or Electric potential energy due to two 
charges as 

 
the total potential energy of the system of three charges shown in Figure 
3.4 is 

          →(3.13) 
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Figure 3.4Three point charges are fixed at the positions shown. The potential energy of this 
system of charges is given by Equation 3.13.  
 
 
EXAMPLE 3.3:-A charge q1=2.00 µC is located at the origin, and a charge 
q2=-6.00 C is located at (0, 3.00) m, as shown in Figure 3.5a. (a) Find the 
total electric potential due to these charges at the point P, whose 
coordinates are (4.00, 0) m. 
 
Solution For two charges, the sum in Equation 3.12 gives 
 
 

 
(b) Find the change in potential energy of a 3.00µC charge as it moves 
from infinity to point P (Fig. 3.6b). 
 
Solution When the charge is at infinity,Ui=0 , and when the charge is at P, 
Uf=q3Vp; therefore, 
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Figure 3.5  (a) The electric potential at P due to the two charges is the algebraic sum of the 
potentials due to the individual charges. (b) What is the potential energy of the three-charge 
system? 

 
 
 
OBTAINING THE VALUE OF THE ELECTRIC FIELD FROM THE 
ELECTRIC POTENTIAL 
From Equation 3.3 we can express the potential difference dV between two 
points a distance ds apart as  

→(3.14) 
If the electric field has only one component Ex , then E. ds =  Ex dx 

 Therefore, Equation 3.14 becomes dV= - Ex dx or 

_ _ (3.15) 
 
If the charge distribution creating an electric field has spherical symmetry 
such that the volume charge density depends only on the radial distance r, 
then the electric field is radial. In this case, E. ds =  Er dr ,and thus we can 
express dV in the form dV=- Er dr ,Therefore, 
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_ _ (3.16) 
 
 
(Note:- equipotential surfaces are perpendicular to field lines) 
When a test charge undergoes a displacement  ds along an equipotential 

surface, then dv=0 because the potential is constant along an equipotential 
surface. From Equation 3.14, then, dV= - E. ds  ; thus, E must be perpendicular 

to the displacement along the equipotential surface .This shows that the 
equipotential surfaces must always be perpendicular to the electric field lines.  

 

  In general, the electric potential is a function of all three spatial 
coordinates. If V(r) is given in terms of the cartesian coordinates, the 
electric field components Ex , Ey , and Ez can readily be found from V(x, y, 
z) as the partial derivatives 
 

 
 
EXAMPLE 3.4:- An electric dipole consists of two charges of equal 
magnitude and opposite sign separated by a distance 2a, as shown in 
Figure 3.6. The dipole is along the x axis and is centered at the origin. (a) 
Calculate the electric potential at point P. 
Solution:- For point P in Figure 3.7 

 
(b) Calculate V and Ex at a point far from the dipole. 
Solution If point P is far from the dipole, such that x<<a then a

2
 can be 

neglected in the term x
2
- a

2
  and V becomes   
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Using Equation 3.15 and this result, we can calculate the electric field at a 
point far from the dipole: 

 
 (c) Calculate V and Ex if point P is located anywhere between the two 
charges. 
Solution:- 

 
 

  

 
Figure 3.6 An electric dipole located on the x axis 

 
ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE 
DISTRIBUTIONS 
The electric potential dV at some point P due to the charge element dq is 
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 where r is the distance from the charge element to point P. in general, 
a different distance from point P and because ke is constant, we can 
express V as 

 
 
 
 
Figure 3.7 The electric potential at the point P due to a 
continuous charge distribution can be calculated by dividing 
the charged body into segments of charge dq and summing 
the electric potential contributions over all segments. 

 
EXAMPLE 3.5:- (a) Find an expression for the electric potential at a point P 
located on the perpendicular central axis of a uniformly charged ring of 
radius a and total charge Q. 
Solution Let us orient the ring so that its plane is perpendicular 
to an x axis and its center is at the origin. We can then take point P to be at 
a distance x from the center of the ring, as shown in Figure 3.8. The charge 
element dq is at a distance  from point P. Hence, we can express V 
as: 

 
Because each element dq is at the same distance from point P, we can 
remove  from the integral, and V reduces to 

     (3.17) 
The only variable in this expression for V is x. This is not surprising 
because our calculation is valid only for points along the x axis, where y 
and z are both zero. 
(b) Find an expression for the magnitude of the electric field at point P. 

 
Solution From symmetry, we see that along the x axis E can have only an 
x component. Therefore, we can use Equation 3.15: 
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Figure 3.8  A uniformly charged ring of radius a lies in a 
plane perpendicular to the x axis. All segments dq of the 
ring are the same distance from any point P lying on the 
x axis 

 
 
 

EXAMPLE 3.6:- Find (a) the electric potential and (b) the magnitude of the 

electric field along the perpendicular central axis of a uniformly charged 
disk of radius a and surface charge density σ. 

 
 

Solution (a) Again, we choose the point P to be at a distance x from the 
center of the disk and take the plane of the disk to be perpendicular to the x 
axis. We can simplify the problem by dividing the disk into a series of 
charged rings. The electric potential of each ring is given by Equation 3.17. 
Consider one such ring of radius r and width dr, .The surface area of the 
ring is dA =2πr dr ;and  dq=σdA=σ2πr dr 

 
the potential at the point P due to this ring is 

 

 
 

To find the total electric potential at P, we sum over all rings making up the 
disk. That is, we integrate dV from r = 0 to r = a 
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This integral is of the form u

n
 du and has the value u

n+1
/(n+1), where n=-1/2 

and u=r
2
+x

2
 .This gives 

 

 
 

(b) As in Example 3.5, we can find the electric field at any axial point from 

 
 

 
 

Figure 3.9  A uniformly charged disk of radius a lies in a plane perpendicular to the x axis. The 
calculation of the electric potential at any point P on the x axis is simplified by dividing the disk 
into many rings each of area 2πr dr. 

 
EXAMPLE 3.7:- A rod of length L located along the x axis has a total 
charge Q and a uniform linear charge density λ= Q/L . Find the electric 
potential at a point P located on the y axis a distance a from the origin  

(Fig. 3.10). 
 

Solution The length element dx has a charge dq = λ dx. Because this 

element is a distance r =√      from point P, we can express the 
potential at point P due to this element 
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To obtain the total potential at P, we integrate this expression over the 
limits x = 0 to x=L . Noting that ke and λ are constants, we find that 

 

 
This integral has the following value 

 

 
 

Evaluating V, we find that 

 
 
 
 
 
Figure 3.10 A uniform line charge of length located along 
the x axis. To calculate the electric potential at P, the line 
charge is divided into segments each of length dx and 
each carrying a charge 
dq =λ dx. 

 
 
EXAMPLE 3.7:- An insulating solid sphere of radius R has a uniform 
positive volume charge density and total charge Q. (a) Find the electric 

potential at a point outside the sphere, that is, for r <R.Take the potential to 
be zero at r =∞ 
 
Solution:- In Example 2.5, we found that the magnitude of the electric field 
outside a uniformly charged sphere of radius R is 
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where the field is directed radially outward when Q is positive. In this case, 
to obtain the electric potential at an exterior point, such as B in Figure 3.11, 
we use Equation 3.4 and the expression for Er given above: 

 

 
 
Because the potential must be continuous at r = R, we can use this 
expression to obtain the potential at the surface of the sphere. That is, the 
potential at a point such as C shown in Figure 3.12 is  

 
 
 
Figure 25.11A uniformly charged insulating sphere of 
radius R and total charge Q. The electric potentials at 
points B and C are equivalent to those produced by a 
point charge Q located at the center of the sphere 

 
 
 
ELECTRIC POTENTIAL DUE TO A CHARGED CONDUCTOR 
every point on the surface of a charged conductor in equilibrium is at the 
same electric potential. Consider two points A and B on the surface of a 
charged conductor, as shown in Figure 3.12. Along a surface path 
connecting these points, E is always perpendicular to the displacement ds; 
therefore Using this result and Equation 3.3, we conclude that the potential 
difference between A and B is necessarily zero: 
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This result applies to any two points on the surface. Therefore, V is 

constant everywhere on the surface of a charged conductor in equilibrium.  
 
 
 
Figure 3.12 An arbitrarily shaped conductor 
carrying a positive charge. 

 

 
 
 
Note:- 
1-The surface of any charged conductor in electrostatic equilibrium is an 

equipotential surface. Furthermore, because the electric field is zero inside the 
conductor, we conclude from the relationship that the electric potential is constant 

everywhere inside the conductor and equal to its value at the surface. 
2- the electric field is large near convex points having small radii of 

curvature and reaches very high values at sharp points. 
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SUMMARY 
When a positive test charge q0 is moved between points A and B in an 
electric field E, the change in the potential energy is 

 
The electric potential V=U/ q0 is a scalar quantity and has units of joules 
per coulomb ( J/C), where 1 J/C=1 V. 
The potential difference ∆V between points A and B in an electric field E is 
defined as 

 
The potential difference between two points A and B in a uniform electric 
field E is 

 
 
where d is the magnitude of the displacement in the direction parallel to E. 

  An equipotential surface is one on which all points are at the same electric 
potential. Equipotential surfaces are perpendicular to electric field lines. 
  If we define V=0 at rA=∞ the electric potential due to a point charge at 
any distance r from the charge is 

 
We can obtain the electric potential associated with a group of point 
charges by summing the potentials due to the individual charges. 
  The potential energy associated with a pair of point charges separated by 
a distance r 12 is 

 
 
This energy represents the work required to bring the charges from an 
infinite separation to the separation r12 . We obtain the potential energy of a 

distribution of point charges by summing terms like Equation 3.12 over all 
pairs of particles. 
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If we know the electric potential as a function of coordinates x, y, z, we can 
obtain the components of the electric field by taking the negative derivative 
of the electric potential with respect to the coordinates. For example, the x 
component of the electric field is 

 
The electric potential due to a continuous charge distribution is 

  

Every point on the surface of a charged conductor in electrostatic 
equilibrium is at the same electric potential. The potential is constant 
everywhere inside the conductor and equal to its value at the surface. 


