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C H A P T E R TWO (GAUSS’S LAW) 

 

In the preceding chapter we showed how to use Coulomb’s law to calculate the 
electric field generated by a given charge distribution. In this chapter, we describe 
Gauss’s law and an alternative procedure for calculating electric fields. 

ELECTRIC FLUX 
Consider an electric field that is uniform in both magnitude and direction, as 
shown in Figure 2.1. The product of the magnitude of the electric field E and 
surface area A perpendicular to the field is called the electric flux ΦE 

 ΦE=EA                       (2.1) 

From the SI units of E and A, we see that ΦE has units of (N.m2/C). Electric flux is 
proportional to the number of electric field lines penetrating some surface. 
 
 

 

 

 

Figure 2.1 Field lines representing 
a uniform electric field penetrating a plane of 
area A perpendicular to the field. The electric 
flux ΦE through this area is equal 
to EA. 

 
 
 
 
EXAMPLE1: 

What is the electric flux through a sphere that has a radius of 1.00 m and carries a 
charge of +1.00 µC at its center? 
 
Solution The magnitude of the electric field 1.00 m from this charge is given by 
equation  

E=
      

  = (9 x109 N.m2/C2 ) (1.0 x 10-6 C)/ (1.00 m)2 

E1=9x103 N/C 
The field points radially outward and is therefore everywhere perpendicular to 
the surface of the sphere. The flux through the sphere (whose surface  
area A=4πr2=(12.56 m2) is thus 
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ΦE=EA= (9x103 N/C)  (12.56 m2) 
 =1.13 x105 N.m2/C 
 
 Home work: What would be the (a) electric field and (b) flux 
through the sphere if it had a radius of 0.500 m? 

 
***        ***           *** 

 
If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 2.1. From Figure 2.2 we see 
that the two areas are related by A’= A cos θ. Because the flux through A equals 
the flux through A’, we conclude that the flux through A is   
ΦE=E A’ = EA cos θ 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 Field lines representing a uniform electric field penetrating an area A that is at an angle θ to 
the field. Because the  number of lines that go through the area A’ is the same as the number that go 
through A, the flux through A’ is equal to the flux through A and is given by : 
ΦE = EA cos θ  

 
   From this result, we see that the flux through a surface of fixed area A has  
a maximum value EA when the surface is perpendicular to the field (in other 
words,when the normal to the surface is parallel to the field, that is, θ=0 in  
Figure 2.2); the flux is zero when the surface is parallel to the field (in other 
words, when the normal to the surface is perpendicular to the field, that is, 
 θ=90. In more general consider a surface divided up into a large number of  
small elements (Figure 2.3) 
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ΦE =∫surface E.dA        (Definition of electric flux) 
 

The net flux through the surface is proportional to the net number of lines leaving 
the surface. If more lines are leaving than entering, the net flux is positive. If more 
lines are entering than leaving, the net flux is negative.  
we can write the net flux ΦE through a closed surface as 
 

ΦE =  ∫  E.dA =  ∫  EndA                    (2.2) 
 

Where  En represents the component of the electric field normal to the surface. 
 
 
 
 
Figure 2.3 a small element of surface area dAi . The electric field 
makes an angle θ with the vector dAi , defined as being normal to 
the surface element, and the flux through the element is equal to 
Ei dAi cos  .  

EXAMPLE 2:-Consider a uniform electric field E oriented in the x direction. Find 
the net electric flux through the surface of a cube of edges L, oriented as shown in 
Figure 2.4.  
 
Solution :The net flux is the sum of the fluxes through all faces of the cube. First, 
note that the flux through four of the faces (3),( 4), and the unnumbered ones) is 
zero because E is perpendicular to dA on these faces. 

 
 
Figure 2.4 A closed surface in the shape of a cube in a uniform electric field oriented parallel to the x 
axis.  
 

dAi 
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The net flux through faces 1and 2 is: 

ΦE = ∫1 E.dA+∫2 E.dA 
 
For face(1), E is constant and directed inward but dA1 is directed Outward(θ=180); 
thus, the flux through this face is: 

∫1 E.dA =∫1  E (cos180) dA = -E ∫1dA = -EA = -EL2 

 
Because  L2 the area of each face is A=L2 

 
For face(2) ,E is constant and outward and in the same direction as dA2(θ=0); 
hence, the flux through this face is: 

∫2 E.dA = ∫2 E  (cos0) dA = E ∫2 dA = +EA = EL2 

 
Therefore, the net flux over all six faces is: 

ΦE = -EL2 + EL2 + 0 + 0 + 0 + 0 = 0 
 

GAUSS’S LAW 
Consider a positive point charge q located at the center of a sphere of radius r, as 
shown in Figure 2.5. From Equation (E= k |q| /r 2) we know that the magnitude of 
the electric field everywhere on the surface of the sphere . 
As noted in Example 2.1, the field lines are directed radially outward and hence 
perpendicular to the surface at every point on the surface. That is, at each surface 
point, E is parallel to the vector dAi representing a local element of area ∆Ai 
surrounding the surface point. Therefore, 

Ei  . dAi  = Ei dAi  

and from Equation 2.2 we find that the net flux through the gaussian surface is  
ΦE = ∫ E.dA =∫ EdA=E∫ dA 

 
 

 
 
 
Figure 2.5 A spherical Gaussian surface of radius r surrounding 
a point charge q. When the charge is at the center of the 
sphere, the electric field is everywhere normal to the surface 
and constant in magnitude 
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where we have moved E outside of the integral because, by symmetry, E is 
constant over the surface and given by E= k q/r 2.Furthermore, because the 
surface is spherical, Hence, the net flux through the gaussian surface is  

ΦE = 
            

  
 = 4 π k q = 

 

  
        (because k =1/4π  ) 

 
We can verify that this expression for the net flux gives the same result as 
Example 1: 
 
 

Notes:- 
1- the net flux through any closed surface is: 

ΦE = ∮     
 

  =  
 

  
          (Gauss’s law ) 

2- the net electric flux through a closed surface that surrounds no charge is zero. 
3- the electric field due to many charges is the vector sum of the  electric fields 
produced by the individual charges 
 

∫ E.dA =∫ (E1+E2+………).dA 
5- Gauss’s law is useful for evaluating E when the charge distribution has high 
symmetry 
6- The net electric flux through any closed surface depends only on the charge 
inside that surface (see figure 2.6). 
 
 

Figure 2.6The net flux through surface S is  q1/    ,the 

net flux through surface S’ is q2+q3/    and the net flux 
through surface S” is zero. 
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EXAMPLE 2.3 : A spherical gaussian surface surrounds a point charge q. 
Describe what happens to the total flux through the surface if (a) the charge is 
tripled, (b) the radius of the sphere is doubled, (c) the surface is changed to a 
cube, and (d) the charge is moved to another location inside the surface. 
Solution (a) The flux through the surface is tripled because flux is proportional to 
the amount of charge inside the surface. 
(b) The flux does not change because all electric field lines from the charge pass 
through the sphere, regardless of its radius.  
(c) The flux does not change when the shape of the Gaussian surface changes 
because all electric field lines from the charge pass through the surface, 
regardless of its shape.  
(d) The flux does not change when the charge is moved 
to another location inside that surface because Gauss’s law 
refers to the total charge enclosed, regardless of where the 
charge is located inside the surface. 
 
EXAMPLE 2.4:- Starting with Gauss’s law, calculate the electric field due to an 
isolated point charge q. 
 
Solution :We choose a spherical gaussian surface of radius r centered on the point 
charge, as shown in Figure 2.7 .The electric field due to a positive point charge is 
directed radially outward by symmetry and is therefore normal to the surface at 
every point( E is parallel to dA at each point). Therefore,  E.dA = EdA and Gauss’s 
law gives 

ΦE = ∮     
 

  =∮     
 

   
 

  
           

 
 

Figure 2.7 The point charge q is at the  center of the 
spherical gaussian surface, and E is parallel to dA at 
every point on the surface. 

By symmetry, E is constant everywhere on the surface, so it can be removed from 
the integral. Therefore, 

∮     
 

 = E ∮   
 

 = E (4π r 2) = 
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E = 
 

          
 

 
E = k q /r 2 

 

This is the familiar electric field due to a point charge that we developed from 
Coulomb’s law in Chapter 1. 
 
EXAMPLE 2.5:-   An insulating solid sphere of radius a has a uniform volume 

charge density ρ and carries a total positive charge Q (Fig. 2.8).  
(a) Calculate the magnitude of the electric field at a point outside the sphere. 
 
Solution : Because the charge distribution is spherically symmetric, we again 
select a spherical gaussian surface of radius r, concentric with the sphere, as 
shown in Figure 2.7a. for the point charge in Example 2.4. we find that 

E= k Q/r 2         → (for  r <a) 
 

Note that this result is identical to the one we obtained for a point charge. 
Therefore, we conclude that, for a uniformly charged sphere, the field in the 
region external to the sphere is equivalent to that of a point charge located at the 
center of the sphere. 
 
(b) Find the magnitude of the electric field at a point inside the sphere. 
Solution: In this case we select a spherical gaussian surface having radius (r > a), 
concentric with the insulated sphere (Fig. 2.8b). Let us denote the volume of this 
smaller sphere by V’ . To apply Gauss’s law in this situation, it is important to 
recognize that the charge qin within the Gaussian surface of volume V’  is less than 
Q. To calculate qin , we use the fact that  qin = ρ V’  
 

qin = ρ V’ = ρ (
 

 
π r 3) 

By symmetry, the magnitude of the electric field is constant everywhere on the 
spherical gaussian surface and is normal to the surface at each point. Therefore, 
Gauss’s law in the region r > a gives  

∮     
 

 = E ∮   
 

 = E(4π r 2) = 
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Solving for E gives 

E= 
   

       
 =  

   
 

 
     

       
 = 

    

   
 

 

Because ρ = Q / (
 

 
π a 3) by definition and since k = 1/4π  ,  this expression for E 

can be written as: 

E= 
  

       
=  

     

  
 → (for r >a) 

 

 
 
Figure 2.8 A uniformly charged insulating sphere of radius a and total charge Q. (a) The 
magnitude of the electric field at a point exterior to the sphere is k Q/r 2 (b) The magnitude of 

the electric field inside the insulating sphere is due only to the charge within the gaussian 
sphere is k Q r /a3. 

 

 

EXAMPLE 2.6:- A thin spherical shell of radius a has a total charge Q 

distributed uniformly over its surface (Fig. 2.9). Find the electric field at points 
(a) outside and (b) inside the shell.  

 
Solution: (a) The calculation for the field outside the shell is identical to that for 
the solid sphere shown in Example 2.5a. Therefore,  
 

E= k Q / r 2         → (for  r <a) 
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 (b) The electric field inside the spherical shell is zero. Because of the spherical 
symmetry of the charge distribution and because the net charge inside the 
surface is zero . 
 Shows that E = 0 in the region r  > a. We obtain the same results using Equation  
(E = k ∫dq /r2) from chapter one   and integrating over the charge distribution 
( Gauss’s law allows us to determine these results in a much simpler way). 

 
 

 
Figure 2.9 (a) The electric field inside a uniformly charged spherical shell is zero. The field 
outside is the same as that due to a point charge Q located at the center of the shell. (b) 

Gaussian surface for r < a. (c) Gaussian surface for r >a. 
 

 
 

EXAMPLE 2.7:- Find the electric field a distance r from a line of positive charge 
of infinite length and constant charge per unit length λ (Fig. 2.10). 
 
Solution : we select a cylindrical gaussian surface of radius r and length L that is 
coaxial with the line charge. For the curved part of this surface, E is constant in 
magnitude and perpendicular to the surface at each point.  Furthermore, the flux 
through the ends of the gaussian cylinder is zero because E is parallel to these 
surfaces. 
The total charge inside our gaussian surface is λL. Applying Gauss’s law we find 
that for the curved surface 

ΦE = ∮     
 

  = ∮    
 

 = EA =
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The area of the curved surface A = 2 πrL ; is therefore, 
 

E 
 

      
 =   

 

 
 

 

Thus, we see that the electric field due to a cylindrically symmetric charge 
distribution varies as 1/r, whereas the field external to a spherically symmetric 
charge distribution varies as 1/r 2. 

 

 
Figure 2.10 An infinite line of charge surrounded by a cylindrical gaussian surface concentric 
with the line. 

 
 

EXAMPLE 2.8:- Find the electric field due to a nonconducting, infinite plane of 

positive charge with uniform surface charge density ς. 
 

Solution : By symmetry, E must be perpendicular to the plane and must have the 
same magnitude at all points equidistant from the plane. The fact that the 
direction of E is away from positive charges indicates that the direction of E on 
one side of the plane must be opposite its direction on the 
other side, as shown in Figure 2.11. The flux through each end of the cylinder is 
EA; hence, the total flux through the entire gaussian surface is just that through 
the ends, ΦE =2EA. 
Noting that the total charge inside the surface is qin =ςA, we use Gauss’s law and 
find that 
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ΦE =2EA= qin/  = ςA /   
E= ς /                                →(*) 
Because the distance from each flat end of the cylinder to the plane does not 
appear in Equation (*), we conclude that E= ς /     at any distance from the 
plane. That is, the field is uniform everywhere 

 
Figure 2.11 A cylindrical gaussian surface penetrating an infinite plane of charge. The flux is EA 
through each end of the gaussian surface and zero through its curved surface. 

 
 

EXAMPLE 2.9:- Explain why Gauss’s law cannot be used to calculate the electric 
field near an electric dipole, a charged disk, or a triangle with a point charge at 
each corner. 

 
Solution The charge distributions of all these configurations do not have sufficient 
symmetry to make the use of Gauss’s law practical. We cannot find a closed 
surface surrounding any of these distributions. 
 
CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM 
When there is no net motion of charge within a conductor, the conductor 
is in electrostatic equilibrium. As we shall see, a conductor in electrostatic 
equilibrium has the following properties: 
1. The electric field is zero everywhere inside the conductor. 
2. If an isolated conductor carries a charge, the charge resides on its surface. 
3. The electric field just outside a charged conductor is perpendicular to the 
surface of the conductor and has a magnitude ς /   , where ς is the surface 

charge density at that point  (ΦE = ∫ E.dA = EA = qin/   = ςA /   where we have 

used the fact that qin =ςA. Solving for E gives E= ς /   ). 
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4. On an irregularly shaped conductor, the surface charge density is greatest at 
locations where the radius of curvature of the surface is smallest. 

 
EXAMPLE 2.10:- A solid conducting sphere of radius a carries a net positive 

charge 2Q. A conducting spherical shell of inner radius b and outer radius c is 
concentric with the solid sphere and carries a net charge -Q. Using Gauss’s law, 
find the electric field in the regions labeled (1),(2),(3) and(4) in Figure 2.12 and the 
charge distribution on the shell when the entire system is in electrostatic 
equilibrium.  
 
Solution : To determine the electric field at various distances r from this center, 
we construct a spherical gaussian surface for each of the four regions of interest.  
 
  To find E inside the solid sphere (region (1)), consider a gaussian surface of 
radius r >a. Because there can be no charge inside a conductor in electrostatic 
equilibrium, we see that qin = 0; thus, on the basis of Gauss’s law and symmetry 
E1=0, for r>a. 
In region (2)between the surface of the solid sphere and the inner surface of the 
shell—we construct a spherical gaussian surface of radius r where  
a >r > b and note that the charge inside this surface is +2Q. Because of the 
spherical symmetry, the electric field lines must be directed radially outward and 
be constant in magnitude on the gaussian surface. Following Example 2.4 and 
using Gauss’s law, we find that: 

E2A = E2(4πr2) = qin/  = 2Q/   (for a >r > b) 
 
(In region(4), where r < c, the spherical gaussian surface we construct surrounds a 
total charge of qin=2Q+(-Q)=Q. Therefore, application of Gauss’s law to this 
surface gives 
 

E4 = kQ/r2    (for r <c) 
 

In region (3), the electric field must be zero because the spherical shell is also a 
conductor in equilibrium. If we construct a gaussian surface of radius r where  
b> r > c, we see that qin must be zero because E3= 0 From this argument, we 
conclude that the charge on the inner surface of the spherical shell must be 
 -2Q to cancel the charge +2Q on the solid 
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sphere. Because the net charge on the shell is -Q, we conclude that its outer 
surface must carry a charge +Q. 
 

 
 

Figure 2.12 A solid conducting sphere of radius a and carrying a charge 2Q surrounded by a 
conducting spherical shell carrying a charge -Q. 

 

 
 
 
 
 
 
 
 
 
 
 

 


