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c h a p t e r one (Electric Fields) 

 

PROPERTIES OF ELECTRIC CHARGES: 

The electric charge has the following important properties (according to Franklin’s 
model of electricity): 
•Two kinds of electric charges occur in nature, with the property that unlike 
charges attract one another and like charges repel one another. 
 
• Electric charge is conserved (this means that, charge is not created in the 
process. The electric field state is due to a transfer of charge from one object to 
the other. One object gains some amount of negative charge while the other 
gains an equal amount of positive charge. For example, when a glass rod is 
rubbed with silk, the silk obtains a negative charge that is equal in magnitude to 
the positive charge on the glass rod. 
 
• Electric charge is quantized (this means that the net charge in a closed region 
remains the same). 
 

INSULATORS AND CONDUCTORS: 
 

It is convenient to classify substances in terms of their ability to conduct electric 
charge: 
1-Electrical conductors(materials in which electric charges move freely such as 
copper, aluminum, and silver) When such materials are charged in some small 
region, the charge readily distributes itself over the entire surface of the material. 
 
2-Electrical insulators(materials in which electric charges cannot move freely such 
as glass, rubber, and wood )When such materials are charged by rubbing, only the 
area rubbed becomes charged, and the charge is unable to move to other regions 
of the material. 
 
3- Semiconductors are a third class of materials, and their electrical properties 
are somewhere between those of insulators and those of conductors such as 
silicon and germanium. 
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(Note: When a conductor is connected to the Earth by means of a conducting 
wire or pipe, it is said to be grounded.) 
 
 

Charging by induction: 
To understand induction, consider a neutral (uncharged) conducting sphere 
insulated from ground, as shown in Fig.1a. When a negatively charged rubber rod 
is brought near the sphere, the region of the sphere nearest the rod obtains an 
excess of positive charge while the region farthest from the rod obtains an equal 
excess of negative charge, as shown in Fig.1b. (That is, electrons in the region 
nearest the rod migrate to the opposite side of the sphere. This occurs even if the 
rod never actually touches the sphere.) If the same experiment is performed with 
a conducting wire connected from the sphere to ground (Fig. 1c),some of the 
electrons in the conductor are so strongly repelled by the presence of the 
negative charge in the rod that they move out of the sphere through the ground 
wire and into the Earth. If the wire to ground is then removed (Fig.1d), the 
conducting sphere contains an excess of induced positive charge. When the 
rubber rod is removed from the vicinity of the sphere (Fig. 1e), this induced 
positive charge remains on the ungrounded sphere. Note that the charge 
remaining on the sphere is uniformly distributed over its surface because of the 
repulsive forces among the like charges. Also note that the rubber rod loses none 
of its negative charge during this process. 
Charging an object by induction requires no contact with the body inducing the 
charge. This is in contrast to charging an object by rubbing (that is, by 
conduction), which does require contact between the two objects.A process 
similar to induction in conductors takes place in insulators. 
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Figure 1Charging a metallic object by induction (that is, the two objects never touch each other). (a) A 
neutral metallic sphere, with equal numbers of positive and negative charges.(b) The charge on the 
neutral sphere is redistributed when a charged rubber rod is placed near the sphere. (c) When the 
sphere is grounded, some of its electrons leave through the ground wire. (d) When the ground 
connection is removed, the sphere has excess positive charge that is nonuniformly distributed. (e) When 
the rod is removed, the excess positive charge becomes uniformly distributed over the surface of the 
sphere. 
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COULOMB’S LAW 
Coulomb’s experiments showed that the electric force between two stationary 
charged particles 
• is inversely proportional to the square of the separation r between the particles 
and directed along the line joining them; 
• is proportional to the product of the charges q1 and q2 on the two particles; 
• is attractive if the charges are of opposite sign and repulsive if the charges have 
the same sign. 
From these observations, we can express Coulomb’s law as an equation giving 
the magnitude of the electric force (sometimes called the Coulomb force) 
between two point charges: 

   
|  ||  |

  
 

 
Where k is a constant called the Coulomb constant.The value of the Coulomb 
constant depends on the choice of units. The SI unit of charge is the coulomb (C). 
The Coulomb constant k in SI units has the value: 

k = 8.987 5 x109 N.m2/C2 

For most purposes, the approximation k = 9 x109 N.m2/C2  is sufficiently accurate  
 
This constant is also written in the form: 
 

  
 

    
 

Where the constant    is known as the permittivity of free space and has the 
value 8.85 x10-12 C2/N.m2. 
 
The smallest unit of charge known in nature is the charge on an electron or 
proton, which has an absolute value of  
 

|e|= 1.6 x10-19 C 
 
Table 1 Charge and Mass of the Electron, Proton, and Neutron 

Particle Charge (C) Mass (kg) 
Electron (e) -1.6 x10-19 9.11x10-31 

Proton (p) +1.6x10-19 1.672 5 x10-27 

Neutron (n) 0 1.674 8 x10-27 
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EXAMPLE 1:-The electron and proton of a hydrogen atom are separated (on the 
average) by a distance of approximately 5.3 x10-11 m. Find the magnitudes of the 
electric force and the gravitational force between the two particles. 
 
Solution: From Coulomb’s law, we find that the attractive electric force has the 
magnitude 

    
|  ||  |

  
 

 

Fe = (9 x109 N.m2/C2) (1.6 x10-19 C)2/(5.3 x 10-11 m)2 

Fe = 8.2x10-8 N 
Using Newton’s law of gravitation and Table 1 for the particle masses, we find 
that the gravitational force has the magnitude 

    
       

  
 

Fg=(6.7x10-11N.m2/kg2)x(9.11 x10-31kg)(1.67 x10-27kg)/(5.3 x10-11)2 

Fg= 3.6x10-47 N 
 
The ratio Thus, the gravitational force between charged atomic particles is 
negligible when compared with the electric force. Note the similarity of form of 
Newton’s law of gravitation and Coulomb’s law of electric forces. 
 *  * * 
 
The force is a vector quantity thus, the law expressed in vector form: 

 

     
|  ||  | 

  
                                    

 
 

Where rˆis a unit vector directed from q1 to q2 , as shown in Figure (2a) 

from equation(1) , we see that if q1 and q2 have the same sign, as in Figure 2a, the 
product q1q2 is positive and the force is repulsive. If q1 and q2 are of opposite sign, 
as shown in Figure 2b, the product q1q2 is negative and the force is attractive. 
Noting the sign of the product q1q2 is an easy way of determining the direction of 
forces acting on the charges 
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Figure 2Two point charges separated by a distance r exert a force on each other that is given by 
Coulomb’s law. The force F21 exerted by q2 on q1 is equal in magnitude and opposite in direction to the  
 
When more than two charges are present, the force between any pair of them is 
given by Equation (1). Therefore, the resultant force on any one of them equals 
the vector sum of the forces exerted by the various individual charges. For 
example, if four charges are present, then the resultant force exerted by 
particles2, 3, and 4 on particle 1 is: 
 

F1=F21+F31+F41 

 
 
 EXAMPLE 2:-Consider three point charges located at the corners of a right 

triangle as shown in Figure 3, where q1=q3=5µc ,q2=-2 µc, and a=0.1m. Find the 

resultant force exerted on q3 . 

Solution :First, note the direction of the individual forces exerted by q1 and q2 on 
q3 . The force F23 exerted by q2 on q3 is attractive because q2 and q3 have opposite 
signs. The force F13 exerted by q1 on q3 is repulsive because both charges are 
positive. The magnitude of F23 is: 
F23= k |q2 ||q3| / a

2
 

F23= (9 x109N.m2/C2)x(2.0 x10-6 C)(5.0 x10-6 C)/(0.10 m)2 

F23= 9.0N 
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Note that because q3 and q2 have opposite signs, F23 is to the left, as shown in 
Figure 4. 
The magnitude of the force exerted by q1 on q3 is: 
F13= k |q1 ||q3| / (√2a)

2
 

F13= (9 x109 N.m2/C2 ) (5.0 x 10-6 C)(5.0 x10-6 C)/2(0.10 m)2 

F13= 11N 
 
The force F13 is repulsive and makes an angle of 45° with the x axis. Therefore, the 
x and y components of F13 are equal, with magnitude given by : 
F13 cos 45° =7.9 N 
The force F23 is in the negative x direction. Hence, the x and y components of the 
resultant force acting on q3 are: 
 
F3x = F13x+F23 = 7.9 N - 9.0 N = -1.1 N 
F3y = F13y = 7.9 N 
 
 

 
 
Figure 3:The force exerted by q1 on q3 is F13 The force exerted by q2 on q3 is F23 . The resultant 
force F3 exerted on q3 is the vector sum F13 +F23 . 
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THE ELECTRIC FIELD 
 
       the electric field E at a point in space is defined as the electric force Fe acting 

on a positive test charge q0 placed at that point divided by the magnitude of  the 

test charge: 

   
 

  
 

Note that E is the field produced by some charge external to the test charge it is not 

the field produced by the test charge itself. For example, every electron comes with 

its own electric field. The vector E has the SI units of newton per coulomb (N/C). 

To determine the direction of an electric field, consider a point charge q located a 

distance r from a test charge q0 located at a point P, as shown in Figure (5) q 

According to Coulomb’s law, the force exerted by q on the test charge is  

 

                             
    

    
 
                                         

where  rˆ is a unit vector directed from q toward q0. Because the electric field at P, 

the position of the test charge, is defined by E ≡ Fe/q0 ,we find that at P, the electric 

field created by q is: 

                             
  

  
                                         

If is positive, as it is in Figure (5a), the electric field is directed radially out ward 

from it. If q is negative, as it is in Figure (5b), the field is directed toward it. 

 
Figure 5: A test charge q0 at point P is a distance r from a point charge q. (a) If q is positive, then the 
electric field at P points radially outward from q. (b) If q is negative, then the electric field at P points 
radially inward toward q. 
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- at any point P, the total electric field due to a group of charges equals the vector 
sum of the electric fields of the individual charges 

   ∑  
    

  
 

 
     

Where ri is the distance from the ith charge qi to the point P (the location of the 

test charge) and riˆ is a unit vector directed from qi toward P. 

 
EXAMPLE 3:-A charge q1=7.0 µC is located at the origin, and a second 
Charge q2=5.0 µC is located on the x-axis, 0.30 m from the origin (Fig.6). Find the 
electric field at the point P, which has coordinates (0, 0.40) m. 
 
Solution First, let us find the magnitude of the electric field at P due to each 
charge. The fields E1 due to the 7.0 µC charge and E2 due to the -5.0 µC charge are 
shown in Figure(6)their magnitudes are: 
 
E1= k|q1| /r1

2= (9 x109 N.m2/C2 ) (7.0 x 10-6 C)/ (0.40 m)2 
E1=3.9x105N/C 
 
E2= k|q2| /r2

2= (9 x109 N.m2/C2 ) (5.0 x 10-6 C)/ (0.50 m)2 
E2=1.8x105N/C 
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Figure 6The total electric field E at P equals the vector sum E1+E2 where E1 is the field due to the 
positive charge q 1 and E2 is the field due to the negative charge q2 
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EXAMPLE 4:- An electric dipole is defined as a positive charge q and a negative 

charge -q separated by some distance. For the dipole shown in Figure 7, find the 

electric field E at P due to the charges, where P is a distance y<<a from the origin. 

 

Solution: At P, the fields E1 and E2 due to the two charges are equal in magnitude 

because P is equidistant from the charges. The total field is: 

E= E1+ E2, where 

E1= E2= k q/r 2= k q / (y2+ a2) 

The y components of E1 and E2 cancel each other, and the x components add 

because they are both in the positive x -direction. Therefore, E is parallel to the x 

axis and has a magnitude equal to 2E1cosθ. From Fig. 7 we see that  

cosθ = a/r = a/( y2+ a2 )1/2  Therefore, 

E= 2E1cosθ = 2 k q a/ (y2+ a2) ( y2+ a2 )1/2 

E=2 k q a / ( y2+ a2 )3/2 

Because y<<a we can neglect a2 and write 

E≈ 2 k q a / y3 

 

 

 

Figure 7 The total electric field E atP due to two charges of equal magnitude and opposite sign (an 

electric dipole) equals the vector sum E1+ E2.The field E1 is due to the positive charge q, and E2 is the field 

due to the negative charge -q. 
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ELECTRIC FIELD OF A CONTINUOUS CHARGE DISTRIBUTION 
         To evaluate the electric field created by a continuous charge distribution, we 
use the following procedure: First, we divide the charge distribution into small 
elements, each of which contains a small charge dq, as shown in Figure 8. 
The electric field at P due to one element carrying charge ∆q is 

    
  

  
             

 
Where r is the distance from the element to point P and rˆ is a unit vector 
directed from the charge element toward P. The total electric field at P due to all 
elements in the charge distribution is approximately 
 

                                                             ∑
    

  
   

 

 

where the index i refers to the i th element in the distribution. Because the 
charge distribution is approximately continuous so: 
 
                                                                           ∫

  

  

 rˆ     (Electric field of a continuous charge distribution) 

 

 
 
 

Figure 8:The electric field at P due to a continuous charge distribution is the vector sum of 
the fields ∆E due to all the elements ∆q of the charge distribution. 

 
 

dq 

dE 
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Note 

• If a charge Q is uniformly distributed throughout a volume V, the volume 
charge density ρ is defined by: 

ρ = Q/V 
where ρ has units of coulombs per cubic meter (C/m3). 
 
• If a charge Q is uniformly distributed on a surface of area A, the surface charge 
density σ is defined by: 

σ = Q/A 
where  σ has units of coulombs per square meter (C/m2). 
 
• If a charge Q is uniformly distributed along a line of length L, the linear charge 
density λ is defined by: 

λ = Q/L 
where λ has units of coulombs per meter (C/m). 
 
• If the charge is no uniformly distributed over a volume, surface, or line, we 
have to express the charge densities as 
ρ= dQ/dV     σ= dQ/dA         λ= dQ/dL 
where dQ is the amount of charge in a small volume, surface, or length element. 
 
EXAMPLE 5:- A rod of length L has a uniform positive charge per unit 
Length λ and a total charge Q. Calculate the electric field at a point P that is 
located along the long axis of the rod and a distance a from one end (Fig. 9). 
 
Solution:Let us assume that the rod is lying along the x axis, that dx is the length 
of one small segment, and that dq is   the charge on that segment. Because the 
rod has a charge per unit length λ, the charge dq on the small segment is dq=λdx 
The field dE due to this segment at P is in the negative x direction (because the 
source of the field carries a positive charge Q), and its magnitude is: 
dE= k dq / x2= k λ dx / x2 

The total field at P due to all segments of the rod, which are at different distances 
from P, is given by : 

E= ∫ k λ dx / x2 
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Figure 9 The electric field at P due to a uniformly charged rod lying along the x axis. The magnitude of 
the field at P due to the segment of charge dq is kdq/x2. The total field at P is the vector sum over all 
segments of the rod. 
 
where the limits on the integral extend from one end of the rod (x=a) to the 
other(x=L+a). The constants ke and λ can be removed from the integral to yield 

E= k λ∫ dx / x2 = k λ [-1/x] 

 E= k  λ {(1/a)-(1/(L+a)} 
 E= k Q/a (L+a) 
Where we have used the fact that the total charge Q =λL . If P is far from the rod 
(a<<L), then the L in the denominator can be neglected, and 
E= k Q / a2 .This is just the form you would expect for a point charge. 
 
EXAMPLE 6: 

A ring of radius a carries a uniformly distributed positive total charge Q. Calculate 
the electric field due to the ring at a point P lying a distance x from its center 
along the central axis perpendicular to the plane of the ring (Fig. 10). 
 
Solution The magnitude of the electric field at P due to the segment of charge dq 
is: 
dE = k dq / r2 

 
This field has an x component dEx= dEcosθ along the axis and a component dE┴ 

perpendicular to the axis. As we see in Figure 10b, however, the resultant field at 
P must lie along the x axis because the perpendicular components of all the 
various charge segments sum to zero. That is, the perpendicular component of 
the field created by any charge element is canceled by the perpendicular 
component created by an element on the opposite side of the ring. Because and 
r=(x2+a2)1/2 and cosθ= x/r, we find that: 
dEx = dEcosθ =( k dq/ r 2 ) x/ r = k x dq / (x2 +a2 )3/2 

L 
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Figure 10 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an element of 
charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of the field at 
P due to segment 1 is canceled by the perpendicular component due to segment 2. 

 
All segments of the ring make the same contribution to the field at P because they 
are all equidistant from this point. Thus, we can integrate to obtain the total field 
at P : 

Ex = ∫k x dq / (x2 +a2 )3/2  = { k x / (x2+a2 )3/2 } ∫dq 
 
Ex= k x Q / (x2+a2 )3/2 

This result shows that the field is zero at x =0 
 
 

 

 
 
 
 
 
 
 
 
 
 


