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Chapter 1

Geometric Optics

1.1 Number of wavelengths between two points. A light wave of

vacuum wavelength 500 nm travels from point A to point B that is a

distance of 0.01 m away.

(1) If the space containing points A and B is vacuum, how many

wavelengths span the space from A to B?

(2) If the region between points A and B is completely filled with

glass of refractive index n = 1.5, how many wavelengths span the

space from A to B?

Let DAB be the distance between points A and B, λ the vacuum

wavelength, and λ′ the wavelength in glass.

(1) In vacuum, the number of wavelengths that span the space from

A to B is

N =
DAB

λ
=

0.01

500× 10−9
= 2× 104.

(2) Note that the frequency of a light beam remains unchanged no

matter in which medium it travels. The wavelength of light in

glass is given by

λ′ =
v

f ′ =
c/n

f
=

c/f

n
=

λ

n
,

where v is the speed of light in glass and f and f ′ are respectively
the frequencies of light in vacuum and in glass with f ′ = f . If

the region between points A and B is completely filled with glass,

the number of wavelengths that span the space from A to B is

given by

N ′ =
DAB

λ′ = n
DAB

λ
= nN = 1.5× 2× 104 = 3× 104.
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2 Problems in University Physics with Solutions—Optics, thermal & modern physics

1.2 Dispersion of fused silica. The wavelength-dependence of the re-

fractive index of fused silica is given by

n2 = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
,

where B1 = 0.696, B2 = 0.407, B3 = 0.897, C1 = 4.679 × 103 nm2,

C2 = 1.351× 104 nm2, and C3 = 9.793× 107 nm2.

(1) At what wavelengths, does n diverge? If n is infinite for light of a

particular wavelength, can the light of this wavelength propagate

in fused silica?

(2) At what wavelengths, is n equal to unity?

(3) What is the value of n as λ → ∞?

(4) Plot n as a function of λ in the visible region for λ from 400 nm

to 700 nm.

(1) From the given expression of n in terms of λ, we see that n di-

verges at λ ≈ 6.840 × 101, 1.162 × 102, and 9.896 × 103 nm. If

n = ∞ for light of a particular wavelength, then v = c/n = 0,

which implies that the light of this wavelength can not propagate

in fused silica and will be absorbed.

(2) To find the wavelengths at which n = 1, we set the given expres-

sion for n2 to unity and obtain

λ2

(
B1

λ2 − C1
+

B2

λ2 − C2
+

B3

λ2 − C3

)
= 0.

From the above equation, we see that n = 1 at λ1 = 0. The other

wavelengths at which n = 1 are to be solved from

B1

λ2 − C1
+

B2

λ2 − C2
+

B3

λ2 − C3
= 0.

The above equation is actually a quadratic algebraic equation in

λ2. Simplifying the above equation, we have

αλ4 + βλ2 + γ = 0, (1.1)

where

α = B1 +B2 +B3,

β = −[B1(C2+C3)+B2(C3+C1)+B3(C1+C2)
]
,

γ = B1C2C3 +B2C3C1 +B3C1C2.

Solving for λ2 from Eq. (1.1), we obtain

λ2 =
1

2α

[
−β ± (β2 − 4αγ

)1/2 ]
. (1.2)
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Geometric Optics 3

Evaluating the above expression using the given values of con-

stants, we obtain the following two positive solutions for λ

λ2 = 1.013× 102 nm, λ3 = 7.349× 103 nm. (1.3)

In summary, the wavelengths at which n = 1 are

λ1 = 0, (1.4a)

λ2 = 1.013× 102 nm, (1.4b)

λ3 = 7.349× 103 nm. (1.4c)

(3) As λ → ∞, n2 is given by

n2 = 1 +B1 +B2 +B3 = 3.

Thus, n → 1.732 as λ → ∞.

(4) The plot of n as a function of λ in the visible region for λ from

400 nm to 700 nm is given in Fig. 1.1 from which we see that n

is a monotonically decreasing function of λ in the visible region.

λ [nm ]

n

Fused silica

400 500 600 700

2.12

2.14

2.16

Fig. 1.1: Refractive index of fused silica in the visible region.

1.3 Spread of the components of a light ray through a prism.

Consider the passage of a light ray with two monochromatic compo-

nents through a trihedral prism with refracting angle α. The refractive

indices of the prism with respect to the two components are respec-

tively n and n + Δn with Δn small. The prism is so oriented that

the deflection angle is minimum. Find the angle Δθ between the two

components of the light ray after its passing through the prism.

Let θi be the angle of incidence into the prism. Let θ be the angle

of refraction out of the prism corresponding to the refractive index n.

We have

γ = θi + θ − α.
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4 Problems in University Physics with Solutions—Optics, thermal & modern physics

From the above equation, we have

Δθ = Δγ.

For the minimum deflection, we also have

sin
γ + α

2
= n sin

α

2
.

Differentiating the above equation with respect to n, we have

1

2
cos

γ + α

2

dγ

dn
= sin

α

2
,

Δγ ≈ 2 sin(α/2)

cos[(γ + α)/2]
Δn =

2 sin(α/2)√
1− n2 sin2(α/2)

Δn.

We thus have

Δθ = Δγ =
2 sin(α/2)√

1− n2 sin2(α/2)
Δn. (1.5)

1.4 Dispersion on an equilateral prism. A beam of white light is

incident on an equilateral prism [Ref. Fig. 1.2] made of glass with

n = 1.67 at λ = 400 nm and n = 1.61 at λ = 750 nm. Assume that

the red rays in the prism are parallel to the bottom face. What is the

angle between the transmitted red and violet beams?

White light
Red

Violet

Air Glass prism

Fig. 1.2: Dispersion of white light on an equilateral prism.

Shown in Fig. 1.3 is the ray diagram for light of a certain wavelength

for which the refractive index of the prism is n. The angles of incidence

and refraction at the entrance point are denoted respectively by θ1 and

θ2; they are denoted respectively by θ′1 and θ′2 at the exit point.

 P
ro

bl
em

s 
an

d 
So

lu
tio

ns
 in

 U
ni

ve
rs

ity
 P

hy
si

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 3

7.
23

7.
11

1.
69

 o
n 

11
/1

7/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 17, 2017 13:35 ws-book9x6 Problems in University Physics with Solutions–9142 univ-phys-sols page 5

Geometric Optics 5

θ1
θ2 θ1

′ θ2
′

n

Fig. 1.3: Ray diagram for light for which the refractive index of the prism is
equal to n.

Since the red light in the prism propagates parallel to the bottom face

of the prism, the angle of refraction at the entrance point is given by

θ2 = 30o. From the law of refraction n1 sin θ1 = n2 sin θ2, we have

θ1 = arcsin

(
n2 sin θ2

n1

)
≈ arcsin

(
1.61× sin 30o

1.00

)
≈ 53.61o, (1.6)

where we have taken the refractive index of air to be approximately

unity.

From the geometry in Fig. 1.3, we can infer that

θ′1 = 60o − θ2. (1.7)

For light for which the refractive index of the prism is n, the angle of

refraction θ′2 at the exit point is given by

θ′2 = arcsin (n sin θ′1) = arcsin [n sin (60o − θ2)] (1.8)

with θ2 given by

θ2 = arcsin

(
sin θ1
n

)
. (1.9)

The angle between the transmitted red and violet beams is given by

Δθ2 = θ′2,violet − θ′2,red. (1.10)

Evaluating the angles θ2, θ′1, θ′2, and Δθ2 using the value of θ1 in

Eq. (1.6) and Eqs. (1.7) through (1.9), we obtain the results in Ta-

ble 1.1 for red and violet beams.

From the values of θ′2 in Table 1.1 and Eq. (1.10), we have

Δθ2 = θ′2,violet − θ′2,red ≈ 59.84− 53.61 = 6.23o. (1.11)

1.5 Path length in a glass plate. A laser beam is incident on the top

surface of a parallel glass plate of thickness t and refractive index ng.
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6 Problems in University Physics with Solutions—Optics, thermal & modern physics

Table 1.1: Values of relevant angles for red and violet beams through the prism.

Beam n θ2 [o] θ′1 [o] θ′2 [o]

Red 1.61 30.00 30.00 53.61

Violet 1.67 28.82 31.18 59.84

t

θi

θr

θi δ

d
Air

Glass

Air

Fig. 1.4: Laser beam passing through a parallel glass plate.

Find the lateral displacement δ of the laser beam and the true length d

of the path through the glass in terms of the angle of incidence θi, the

thickness t and the refractive index ng of the plate, and the refractive

index na of air. What is the optical path length in the glass?

Applying the law of refraction to the refraction at the top surface, we

have na sin θi = ng sin θr. Thus,

sin θr =
na sin θi

ng
, cos θr =

1

ng

(
n2
g − n2

a sin
2 θi
)1/2

.

The true length d of the path is given by

d =
t

cos θr
=

ngt(
n2
g − n2

a sin
2 θi
)1/2 . (1.12)

The lateral displacement δ of the laser beam is given by

δ = t (tan θi − tan θr) cos θi

= t

⎡
⎣1− na cos θi(

n2
g − n2

a sin
2 θi
)1/2

⎤
⎦ sin θi. (1.13)

The optical path length S in the glass is given by

S = ngd =
n2
gt(

n2
g − n2

a sin
2 θi
)1/2 . (1.14)
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Geometric Optics 7

1.6 Reflection and refraction of light on a slab of glass. Consider

the reflection and refraction of monochromatic light on the interfaces

between air of refractive index na ≈ 1.00 and a slab of glass of re-

fractive index ng = 1.50 as shown in Fig. 1.5. The upper and lower

interfaces are parallel. The angle of incidence θ1 is 50o.

θ1

θ2
θ2θ2

θ3

Air

Glass

Air

Fig. 1.5: Reflection and refraction of monochromatic light on the interfaces
between air and a slab of glass.

(1) Find the angle of refraction θ2 at the upper interface.

(2) Find the angle of refraction θ3 at the lower interface.

(1) From the law of refraction (Snell’s law) na sin θ1 = ng sin θ2, we

have

θ2 = arcsin

(
na sin θ1

ng

)
≈ arcsin

(
1.00× sin 50o

1.50

)
≈ 30.71o.

(2) Making use of the fact that the angle of incidence at the lower

interface is equal to the angle of refraction at the upper interface,

we have ng sin θ2 = na sin θ3 from the law of refraction. Thus,

θ3 = arcsin

(
ng sin θ2

na

)
≈ arcsin

(
1.50× sin 30.71o

1.00

)
= 50o.

That θ3 = θ1 is required by the fact that the light ray can be

traced back. This fact can be directly used to obtain the value of

θ3.

1.7 Light propagation above the surface of the Earth. Consider

the propagation of a light ray above the surface of the Earth.

(1) If the light ray is propagating in a horizontal direction above

the surface of the Earth with the refractive index of air given by

1.500 × 10−7 m−1, what is the radius of curvature of the light

ray?
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8 Problems in University Physics with Solutions—Optics, thermal & modern physics

(2) For the light ray to be able to travel around the earth along a

circular path, what is the value of the gradient of the refractive

index along the circular path?

(1) The refractive index n of air above the surface of the Earth de-

pends only on the radial distance r from the center of the Earth,

n = n(r). Assume that the light ray travels horizontally at the

radial distance R from the center of the Earth.

θ

O

R

r

Fig. 1.6: Propagation of a light ray above the surface of the Earth.

At the radial distance r with r � R, the angle θ that the light

ray makes with the normal of the spherical surface of radius r is

given through

sin θ =
R

r
.

Note that θ is the angle of incidence of the light ray onto the

spherical surface of radius r. Differentiating the above equation

with respect to r yields

cos θ
dθ

dr
= −R

r2
. (1.15)

The above two results will be used in the following derivations to

relate θ to r.

From the law of refraction, we have

n sin θ = constant.

Differentiating the above equation with respect to r yields

sin θ
dn

dr
+ n cos θ

dθ

dr
= 0, (1.16)

R

r

dn

dr
− n

R

r2
= 0,
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r =
n

dn/dr
. (1.17)

For r = R, we have R = n/(dn/dR). For dn/dR = 1.500 ×
10−7 m−1 and n ≈ 1, we have

R ≈ 1

1.500× 10−7
≈ 6.667× 106 m = 6667 km. (1.18)

(2) We return to Eq. (1.16). Inserting Eq. (1.15) into Eq. (1.16), we

obtain

sin θ
dn

dr
− n

R

r2
= 0.

Solving for dn/dr from the above equation yieds

dn

dr
=

nR

r2 sin θ
.

For the light ray to be able to travel around the Earth along a

circular path, we must have sin θ = π/2. We thus have

dn

dr
=

nR

r2
.

For r = R = REarth, we have

dn

dREarth
=

n

REarth
.

Making use of REarth ≈ 6.4× 106 and n ≈ 1, we have

dn

dREarth
≈ 1

6.4× 106
≈ 1.6× 10−7 m−1. (1.19)

1.8 Object in water. Suppose that an object is put into a swimming

pool filled with water. We consider the apparent depth of the object.

(1) Derive an expression for the apparent depth of a point on the

object at an arbitrary angle of refraction from the water into air.

(2) Find the apparent depth of the object if it is looked at straight

down from a position above the water.

(3) Plot the ratio of the apparent depth to the true depth as a func-

tion of the angle of refraction from the water into air.

(1) We only consider non-internal reflections of light from the object.

The reflections of light from two symmetric points of a flat object

are schematically shown in Fig. 1.7.
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D
a

D
t

Flat object

E

A

C

C′

D
B

B′

na

nw

Water surface

Apparent position

θ2

θ1

θ2

θ1

Fig. 1.7: Flat object in water.

The true depth of the object is denoted by Dt while its apparent

depth is denoted by Da. The apparent position of the object

is determined by the tangentially contacting points of the raised

virtual object with the extensions of light rays from the water

into air as indicated by the oblique dotted lines in Fig. 1.7. Note

that B′C′ = BC.

Let nw and na be respectively the refractive indices of water and

air. The light reflected from the object will be refracted at the

surface of the water before it reaches the eye.

From the right triangle ΔB′C′A, we have

Da = AB′ = B′C′ cot θ2.

Making use of the fact that B′C′ = BC, we have

Da = BC cot θ2.

From the right triangle ΔBCA, we have

BC = AB tan θ1 = Dt tan θ1.

Thus,

Da = Dt tan θ1 cot θ2.

From the law of refraction, we have nw sin θ1 = na sin θ2. Ex-

pressing sin θ1 in terms of sin θ2, we have sin θ1 = (na/nw) sin θ2.

In terms of na, nw, θ2, and Dt, we can express Da as

Da =
naDt cos θ2
nw cos θ1

=
naDt

(
1− sin2 θ2

)1/2
(
n2
w − n2

a sin
2 θ2
)1/2 . (1.20)
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(2) For looking straight down at the object from a position above the

water, we have θ2 → 0. From Eq. (1.20), we see that

Da

∣∣∣
θ2→0

=
na

nw
Dt =

1.000293

1.333
Dt ≈ 0.75Dt =

3

4
Dt. (1.21)

Thus, the apparent depth is about three quarters of the true depth

if the object is looked straight down from a position above the

water.

(3) The plot of Da/Dt as a function of θ2 is given in Fig. 1.8 from

which we see that the apparent depth decreases monotonically as

θ2 increases. This is in consistency with our daily-life experiences.

θ [ o ]

Da/Dt

0 30 60 90
0.00

0.25

0.50

0.75

Fig. 1.8: Plot of Da/Dt as a function of θ2.

1.9 Refractions through a series of parallel planar interfaces.

Consider the refractions of a monochromatic light beam through N

parallel planar interfaces between N +1 layers of media numbered se-

quentially as shown in Fig. 1.9. The angle of incidence in the leftmost

layer (layer 1) of refractive index n1 onto the interface between layers

1 and 2 is θ1. The angle of refraction into the rightmost layer (layer

N + 1) of refractive index nN+1 is θN+1. The angles of incidence and

refraction in layer j (1 < j < N) are equal as indicated in Fig. 1.9.

Express θN+1 in terms of θ1 and refractive indices n1, n2, · · · , nN+1.

Applying the law of refraction to the refraction on the interface be-

tween layers 1 and 2, we have n1 sin θ1 = n2 sin θ2 from which we

obtain

θ2 = arcsin

(
n1 sin θ1

n2

)
.
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n1 n2 n3 nN nN+1

θ1

θ2

θ2

θ3
θ3

θ4

θN−1

θN

θN

θN+1

Fig. 1.9: Refractions of light through a series of parallel planar interfaces.

Applying the law of refraction to the refraction on the interface be-

tween layers 2 and 3, we have n2 sin θ2 = n3 sin θ3 from which we

obtain

θ3 = arcsin

(
n2 sin θ2

n3

)
= arcsin

(
n1n2 sin θ1

n2n3

)
.

Continuing in this manner until the last interface between layers N

and N + 1, we obtain

θN+1 = arcsin

(
n1n2 · · ·nN sin θ1
n2n3 · · ·nN+1

)
= arcsin

(
n1 sin θ1
nN+1

)
. (1.22)

From the above result, we see that the angle θN+1 does not depend

on the refractive indices of the intermediate layers between the left-

most and rightmost layers. Mathematically, this is because the factors

arising from the intermediate layers are canceled completely in the suc-

cessive applications of the law of refraction. Physically, this is because

a light ray can be traced back and, thus, all the intermediate layers

can be abstracted into an interface of zero thickness between layers 1

and N + 1.

1.10 Concave mirror. For a concave mirror of focal length f , what is

the object distance do such that the image distance is equal to the

object distance?

Inserting di = do into the mirror equation 1/do + 1/di = 1/f , we

have

2

do
=

1

f
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from which it follows that

do = 2f. (1.23)

1.11 Focal length of a concave mirror. When an object is a certain

distance in front of a concave mirror, the magnification of the image

is M1. If the object is moved a distance of � from its original location,

the magnification of the image becomes M2. What is the focal length

of the concave mirror?

Let f denote the focal length of the concave mirror. Assume that the

object was originally a distance of do in front of the mirror. From

the mirror equation 1/do + 1/di = 1/f , we have

di =
1

1/f − 1/do
=

dof

do − f
.

The magnification of the image is given by

M1 = − di
do

= − f

do − f
. (1.24)

For the object at d′o = do + �, we have from the mirror equation

d′i =
1

1/f − 1/d′o
=

f(do + �)

do + � − f
.

The magnification of the image is now given by

M2 = − d′i
d′o

= − f

do + �− f
. (1.25)

Eliminating do from Eqs. (1.24) and (1.25), we obtain

f =
M2M1

M2 −M1
�. (1.26)

1.12 Observing oneself in a mirror. A person of height h from the

floor to the eye level stands in front of a plane mirror with the top

at the eye level of the person. What is the minimum length of the

mirror for the person to be able to see in the mirror the shoes the

person is wearing as much as the person can possibly see?

The condition we will use to find the minimum length of the mirror

is that light reflected from the shoes can barely reach the person’s

eyes. Let � be the length of the mirror. Let δ be the distance from the
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Ground

θ1

θ1
′

Eye

M
ir

ro
r

δ

�

h

Fig. 1.10: Geometry for finding the minimum length of the mirror.

person to the mirror, with δ → 0. The relevant geometry is shown

in Fig. 1.10.

The angle of incidence of light reflected from the foremost part of

the bottom of a shoe onto the bottom edge of the mirror is given by

tan θ1 =
h− �

δ
.

The angle of reflection of light from the bottom edge of the mirror

directed towards an eye of the person is given by

tan θ′1 =
�

δ
.

From the law of reflection, we have θ1 = θ′1 which, for � = �min, leads

to

h− �min

δ
=

�min

δ

from which we obtain �min = h/2. Note that this result is inde-

pendent of the distance of the person to the mirror. Therefore, the

minimum length of the mirror is half of the height of the person’s

eye level above the ground.

1.13 Focal length of a biconcave lens. A biconcave lens of refractive

index n has two biconcave bounding surfaces of radius R. Find the

focal length of the lens.

For a biconcave lens, we have R1 = −R and R2 = R. From Lens-

maker’s equation 1/f = (n− 1)(1/R1 − 1/R2), we have

1

f
= (n− 1)

(
1

−R
− 1

R

)
= −2(n− 1)

R
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The focal length of the lens is then given by

f = − R

2(n− 1)
. (1.27)

From the above result, we see that the biconcave lens possesses a

negave focal length and is thus a diverging lens.

1.14 Focal length of a planoconcave lens. A planoconcave lens of

refractive index n has a concave bounding surface of radius R and

a flat bounding surface. Find the focal length of the lens. Does

the orientation of the lens affect the value of the focal length? The

orientation of the lens indicates which bounding surface faces the

incident light.

If the concave surface faces the incident light, we have R1 = −R and

R2 = ∞. From Lensmaker’s equation 1/f = (n − 1)(1/R1 − 1/R2),

we have
1

f
= (n− 1)

(
1

−R
− 1

∞
)

= −n− 1

R
.

The focal length of the lens is then given by

f = − R

n− 1
. (1.28)

If the flat surface faces the incident light, we have R1 = ∞ and

R2 = R. From Lensmaker’s equation 1/f = (n − 1)(1/R1 − 1/R2),

we have
1

f
= (n− 1)

(
1

∞ − 1

R

)
= −n− 1

R

from which we obtain the same focal length in Eq. (1.28). Therefore,

the orientation of the lens does not affect the value of the focal length.

1.15 Thin lens with a positive focal length. A thin lens of focal

length f = 0.40 m is used to image a real object that is a distance of

0.25 m from the lens.

(1) Find the location and magnification of the image.

(2) Draw an accurate ray diagram for the image formation.

(1) Since the focal length of the lens is positive, the lens is a con-

verging one. From the lens equation 1/do + 1/di = 1/f , we

have

di =
1

1/f − 1/do
=

1

1/0.4− 1/0.25
≈ −0.67 m. (1.29)
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The magnification is given by

M = − di
do

= − 1

(1/f − 1/do)do
= − 1

do/f − 1

= − 1

0.25/0.40− 1
≈ 2.67. (1.30)

That the value of M is so evaluated in the above is to avoid the

rounding error. If the value of di in Eq. (1.29) were used in M =

−di/do, we would have obtained M = −di/do ≈ 0.67/0.25 =

2.68.

From the above-obtained values of di and M , we see that the

image is virtual, upright, and magnified.

(2) The ray diagram for the image formation of the biconvex lens is

given in Fig. 1.11.

Object

Image

FiFo O

Fig. 1.11: Image formation of a biconvex lens.

1.16 Optical system with two thin lenses. An optical system

[Ref. Fig. 1.12] consists of a biconvex lens (called L1) of focal

length f1 = 0.10 m and a biconcave lens (called L2) of focal length

f2 = −0.20 m. The distance between the two lenses is 0.10 m. Where

is the image of an object in front of L1 and a distance of 0.15 m away

from it?

We first find the position of the image formed by L1 and then find

the position of the image of this image formed by L2. From the lens

equation 1/do + 1/di = 1/f , for do = 0.15 m we have

di =
dof1

do − f1
=

0.15× 0.10

0.15− 0.10
= 0.30 m.
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Object

0.10 m0.15 m

L1 L2

Fig. 1.12: Optical system consisting of a biconvex lens and a biconcave lens.

Thus, the image formed by L1 is real and inverted and is 0.30 m

behind L1. Because the distance between L1 and L2 is 0.10 m, the

image formed by L1 is 0.20 m from L2 on the other side of the optical

system and acts as an object for L2. Thus, d′o = 0.20 m. From the

lens equation 1/do + 1/di = 1/f , we have

d′i =
d′of2

d′o − f2
=

0.20× (−0.20)

0.20− (−0.20)
= −0.10 m.

Thus, the image formed by the optical system is on the opposite side

of the optical system with respect to the object and is 0.10 m from

L2.

1.17 Focal length of a lens. An object located a distance of 0.50 m

to the right of a lens forms an image that is 0.20 m from the lens

on the other side. What are the focal length f of the lens and the

magnification M of the image?

From the statement of the problem, we have do = 0.50 m and di =

0.20 m. Let f be the focal length of the lens. From the lens equation

1/do + 1/di = 1/f , we have

1

f
=

1

do
+

1

di
=

1

0.50
+

1

0.20
= 7 m−1

from which we have f = 1/7 ≈ 0.143 m. The magnification of the

image is given by

M = − di
do

= −0.20

0.50
= −0.4. (1.31)

Thus, the image is real, inverted, and diminished.

1.18 System of converging and diverging lenses. An object is placed

0.300 m to the left of a diverging lens of focal length f1 = −0.100 m.
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A converging lens of focal length f2 = 0.300 m is placed a distance

d to the right of the diverging lens. Find the value of d so that the

final image is at infinity.

We first find the image formed by the diverging lens on the left. From

the lens equation 1/do + 1/di = 1/f1, we have

1

di
=

1

f1
− 1

do
= − 1

0.100
− 1

0.300
= −40

3
m−1.

Thus, di = −0.075 m. For the image formed by the lens on the right

to be at infinity, the image formed by the lens on the left must be at

the focal point of the lens on the right. We thus have f2 = d + |di|
from which we obtain

d = f2 − |di| = 0.300− 0.075 = 0.225 m. (1.32)

1.19 Two identical converging lens. Two identical lens of focal length

f = 0.12 m are placed 0.24 m apart with a common optical axis.

Consider the image of an object that is placed 0.08 m to the left of

the lens on the left. What is the position of the final image relative

to the lens on the right?

We first consider the image formed by the lens on the left. From the

lens equation 1/do + 1/di = 1/f for the lens on the left, we have

1

di
=

1

f
− 1

do
=

1

0.12
− 1

0.08
= −25

6
m−1

from which it follows that di = −0.24 m. The negative value of di
indicates that the image is to the left of the lens on the left. Thus,

the object distance to the lens on the right is given by

d′o = d+ |di| = 0.24 + 0.24 = 0.48 m.

Inserting the above value of d′o to the lens equation 1/d′o+1/d′i = 1/f

for the lens on the right yields

1

d′i
=

1

f
− 1

d′o
=

1

0.12
− 1

0.48
= 6.25 m−1

from which we obtain d′i = 0.16 m. Hence, the final image is a

distance of 0.16 m to the right of the lens on the right.

1.20 Biconvex lens and convex mirror. An optical system consists of

a convex lens L of focal length fL = 0.02 m and a convex mirror M
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FL,o FL,i

FM

Object

d

L

M

Fig. 1.13: Optical system consisting of a biconvex lens and a convex mirror.
Points FL,o and FL,i are respectively the object and image focal points of the
lens. Point FM is the focal point of the mirror. Note that FM coincides with
FL,o.

of radius RM = 0.12 m as shown in Fig. 1.13. The distance between

the lens and the mirror is d = 0.04 m. Find the location of the final

image of the object located 0.03 m in front of the lens L.

We first find the image of the object formed by the lens. We then

find the image of the lens-image formed by the mirror. From the lens

equation 1/dL,o + 1/dL,i = 1/fL, we have

1

dL,i
=

1

fL
− 1

dL,o
=

1

0.02
− 1

0.03
=

50

3
m−1

from which we obtain dL,i = 0.06 m. Because dL,i > d, the image

formed by the lens is a virtual object to the mirror. The object

distance with respect to the mirror is then given by d′o = −(0.06 −
0.04) = −0.02 m. From the mirror equation 1/d′o + 1/d′i = 1/f with

f = −RM/2, we have

1

d′i
= − 2

R
− 1

d′o
= − 2

0.12
− 1

−0.02
=

100

3
m−1

from which it follows that d′i = 0.03 m. That is, the final image is a

distance of 0.03 m to the left of the mirror M .

1.21 Optical system of two biconvex thin lenses. Consider an optical

system consisting of two identical biconvex thin lenses of focal length

f with a separation of 2f . For an object a distance do,1 in front of

the front lens, what is the distance di,2 of the image from the back

lens?
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We first consider the image formed by the front lens. From the lens

equation 1/do,1 + 1/di,1 = 1/f for the front lens, we have

1

di,1
=

1

f
− 1

do,1
=

do,1 − f

do,1f
.

We thus have

di,1 =
do,1f

do,1 − f
.

The front-lens-image acts as an object for the back lens. The object

distance for the back lens is

do,2 = 2f − di,1 =
f(do,1 − 2f)

do,1 − f
.

From the lens equation 1/do,2 + 1/di,2 = 1/f for the back lens, we

have

1

di,2
=

1

f
− 1

do,2
=

1

f
− do,1 − f

f(do,1 − 2f)
=

1

2f − do,1

from which it follows that

di,2 = 2f − do,1. (1.33)

1.22 Parallel incident rays not parallel to the optical axis. Parallel

incident rays make an angle of θ = 5o with the optical axis of a

diverging lens of focal length f = −0.30 m. Where is the image?

Because all the incident rays are parallel, the virtual image will be in

the focal plane. To find the location of the image, let us consider a

ray that passes through the center of the lens. Since this ray does not

change direction after passing through the lens, its intersection with

the focal plane determines the location of the virtual image. Thus,

the virtual image will be off the optical axis by the amount given by

δ = |f | tan θ = 0.30× tan 5o ≈ 0.026 m = 26 mm. (1.34)

1.23 Retro-reflecting sphere. A retro-reflecting sphere is a sphere

of glass that reflects light back directly. For a sphere to be retro-

reflecting, what must be its refractive index? As shown in Fig. 1.14,

the back surface of the sphere is coated so that light can be reflected

from the back surface. Take the refractive index of air to be unity.
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Fig. 1.14: Retro-reflecting sphere.

n

V
C R

θ1 x

y

F

P

Q

θ1
θ2

θ1−θ2

Fig. 1.15: Light ray that is parallel to the principal axis and refracts into the
medium of refractive index n through a spherical surface of radius R. The focal
point is denoted by F .

Let n and R be respectively the refractive index and radius of the

sphere. We first consider the refraction of an incoming light ray into

a medium of refractive index n through a spherical surface as shown

in Fig. 1.15 and find the focal length for the spherical surface. We

then apply the obtained-result to the retro-reflecting sphere.

We use the coordinate system shown in Fig. 1.15 with the coordinate

origin at the center of curvature of the spherical surface. In terms

of the coordinates of point P , (xP , yP ), the angle of incidence θ1 is

given by

θ1 = arctan

(
yP
xP

)
.

From the law of refraction, the angle of refraction θ2 is given by

θ2 = arcsin

(
sin θ1
n

)
.

For θ1 � 1 and θ2 � 1, that is, for paraxial rays, we have

tan θ1 ≈ sin θ1 ≈ θ1 ≈ yP
xP

,

tan θ2 ≈ sin θ2 ≈ θ2 ≈ θ1
n

≈ yP
nxP

.
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From the right triangle ΔPQF , we have

FQ = PQ cot(θ1 − θ2) ≈ PQ

θ1 − θ2
≈ nPQ

(n− 1)θ1
.

From the right triangle ΔPCQ, we have

PQ = R sin θ1 ≈ Rθ1.

Thus,

FQ ≈ nR

n− 1
.

The focal length F is given by F = FV . For paraxial rays, we can

approximate FV with FQ. The focal length f is then given by

f ≈ FQ ≈ nR

n− 1
. (1.35)

We now turn to the retro-reflecting sphere. For the sphere to reflect

light back directly, the coated back surface of the sphere must be

located at the focal point of the front spherical surface. That is,

the focal length of the front spherical surface must be equal to the

diameter of the sphere. We thus have

nR

n− 1
= 2R

from which it follows that

n = 2. (1.36)

Note that the above result was derived under the paraxial approxi-

mation.

1.24 Three identical biconvex lenses. As shown in Fig. 1.16, three

identical biconvex lenses of focal length f are aligned with two neigh-

boring lenses separated by a distance f . Using the graphical method,

find the position and magnification of the resultant image of an ob-

ject located f/2 in front of the leftmost lens.

To construct the resultant image, we use the following two light rays:

Ray 1 is incident onto the leftmost lens in parallel to the optical axis

and ray 2 is directed toward the optic center of the leftmost lens.

Using the rules for the image formation of thin lens, we obtain the

image shown in Fig. 1.17.
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Object

f

f/2 f f f

Fig. 1.16: Three aligned identical convex lenses of focal length f with a spacing
of f between two neighboring lenses.

Object

1

2 Image

Fig. 1.17: Image formation of an optical system with three aligned identical
convex lenses of focal length f with a spacing of f between two neighboring
lenses.

From Fig. 1.17, we see that the image is real and inverted. Because

the image is inverted, the height of the image is negative. From ray

1, we can infer that the absolute value of the height of the image is

the same as the height of the object. Thus, the image is of the same

size as the object.

From ray 2 and in consideration that the image is of the same size

as the object, we can infer that the right triangle with the object as

one side is congruent to the right triangle with the image as one side.

Thus, the image is located f/2 to the right of the rightmost lens.

In consideration that the image is inverted and is of the same size

as the object, we see that the magnification of the image is given by

M = −1.

1.25 Determination of the object size from its image sizes. As

shown in Fig. 1.18, we produced images of an object on a screen

using a thin converging lens. With the positions of the object and the

screen fixed, when we moved the lens in between the object and the

screen, we found that sharp images on the screen could be produced

with the lens being at two different positions. The heights of the

sharp images are respectively given by h1 and h2. What is the height

of the object?
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Converging
lens

Fo Fi

Object

Screen

Image

(a)

Converging
lens

Fo

FiObject

Screen

Image

(b)

Fig. 1.18: Images of an object for the converging lens at two different positions.

Let L denote the distance between the object and the screen. Let f

be the focal length of the converging lens. If the object distance is

do, then the image distance is given by

di = L− do.

From the lens equation 1/do + 1/di = 1/f ,we have
1

do
+

1

L− do
=

1

f
from which we obtain the following quadratic algebraic equation for

the object distance do

d2o − Ldo + fL = 0.

Solving for do from the above equation, we obtain

do =
L

2

(
1±
√
1− 4f

L

)
. (1.37)

The corresponding image distances are then given by

di = L− do =
L

2

(
1∓
√
1− 4f

L

)
. (1.38)

From the expression M = hi/ho = −di/do for the magnification of

the image, we have

h1

h
= −1 +

√
1− 4f/L

1−
√
1− 4f/L

,

h2

h
= −1−

√
1− 4f/L

1 +
√
1− 4f/L

.
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Multiplying together the above two equations yields

h1h2

h2
= 1.

Therefore,

h =
√
h1h2. (1.39)

1.26 Telephoto lens of a camera. As shown in Fig. 1.19, placing a

diverging lens between the normal camera lens and the sensor plane

transforms the camera lens into a telephoto lens. The focal lengths

of the camera lens (L1) and the diverging lens (L2) are respectively

f1 = 50 mm and f2 = −100 mm.

L1 L2 Sensor plane

20 mm d

Fig. 1.19: Telephoto lens.

(1) What is the distance d between the diverging lens and the sensor

plane if the lens system is focused on an object 0.5 m in front

of the lens L1?

(2) What is the magnification of an image formed by the lens sys-

tem?

(1) With respect to L1, the object distance is do,1 = 0.500 m. From

the lens equation 1/do,1 + 1/di,1 = 1/f1 for L1, we have

1

di,1
=

1

f1
− 1

do,1
=

1

0.050
− 1

0.500
= 18 m−1

from which we have di,1 = 1/18 m. To avoid rounding errors,

we have kept the fractional value for di,1. The image of L1

is the object to L2. With respect to L2, the object distance

is do,2 = 0.020 − di,1 = −16/450 m. From the lens equation

1/do,2 + 1/di,2 = 1/f2 for L2, we have

1

di,2
=

1

f2
− 1

do,2
= − 1

0.100
+

450

16
=

290

16
m−1
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from which we obtain di,2 = 16/290 ≈ 0.055m = 55 mm. Thus,

d = 55 mm in order for the image to be in the sensor plane.

(2) The magnification of the system is given by the product of the

magnifications of the two lens. We have

M =

(
− di,1
do,1

)(
− di,2
do,2

)
=
di,1di,2
do,1do,2

= − 16× 450

18× 290× 0.500× 16
≈ −0.172. (1.40)

The negative value ofM implies that the image is inverted with

respect to the object.

1.27 Simple telescope. We consider a simple telescope consisting of

three thin lens L1, L2, and L3 as shown in Fig. 1.20. L1 functions

as the aperture and the entrance pupil of the telescope. L3 is the

eye lens. The focal lengths and diameters of L1, L2, and L3 are

respectively f1 = 0.100 m, f2 = f3 = 0.020 m, D1 = 0.040 m, and

D2 = D3 = 0.012 m.

L1

L2 L3

0.1 m
0.02 m

Light ray

Light ray

Fig. 1.20: Simple telescope.

(1) Trace a light ray entering the telescope in parallel to the optical

axis through the telescope.

(2) Find the position and diameter of the exit pupil.

(1) Ray tracing through the system is given in Fig. 1.21 from which

we see that light rays entering the system in parallel to the

optical axis will be still parallel to the optical axis after passing

through the system.

(2) The exit pupil is the image of the entrance pupil L1 through

L2 and L3. With respect to L2, L1 is located at a distance

of 0.100 m away so that the object distance is given by
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O1 O2
O3

A

B

L1

L2 L3

Light ray

Light ray

Fig. 1.21: Ray tracing through the simple telescope.

do,2 = 0.100 m. From the lens equation 1/do,2 + 1/di,2 = 1/f2
for L2, we have

1

di,2
=

1

f2
− 1

do,2
=

1

0.020
− 1

0.100
= 40 m−1

from which it follows that di,2 = 0.025 m. The image formed

by L2 is the object to L3. In consideration that the distance

between L2 and L3 is 0.020 m, we have

do,3 = 0.020− 0.025 = −0.005 m.

From the lens equation 1/do,3 + 1/di,3 = 1/f3 for L3, we have

1

di,3
=

1

f3
− 1

do,3
=

1

0.020
+

1

0.005
= 250 m−1

from which we have di,3 = 0.004 m. Thus, the exit pupil is

located 0.004 m behind L3.

The diameter of the exit pupil can be found by using the sim-

ilarity between the right triangles formed by light rays, optical

axis, and lenses. The diameter of the entrance pupil is given by

the diameter D1 of L1. Let D′ denote the diameter of the exit

pupil. From the similarity between the right triangles ΔAO1O2

and ΔBO3O2, we have

D1/2

D′/2
=
f1
f3
.

Thus,

D′ =
f3
f1
D1 =

0.020

0.100
× 0.040 = 0.008 m. (1.41)

1.28 Prescription for a farsighted eye. The eye of a farsighted person

has a near point at 1.25 m. What prescription in diopters will be
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required for contact lenses if the near point of the eye of that person

is to be moved to 0.25 m?

For contact lenses, the optical power of the corrective lenses is given

by 1/f = 1/dnear,normal−1/dnear. In the current case, dnear = 1.25 m

and dnear,normal = 0.25 m. We thus have

1

f
=

1

dnear,normal
− 1

dnear
=

1

0.25
− 1

1.25
= 3.2 diopters. (1.42)

1.29 *Focusing through a refracting interface. Parallel light rays

are incident from medium 1 of refractive index n1 onto the interface

between medium 1 and medium 2 of refractive index n2 as shown in

Fig. 1.22. Assume that n2 > n1.

z

r

O

n1 n2

F

f

Fig. 1.22: Focusing interface between two media.

(1) For the light rays to be focused at the point F that is a distance

f from point O, what is the shape of the interface?

(2) Find the maximum radius of the light beam that can be focused

by the interface.

(1) Let us consider the light ray that is incident at point (z, r) on

the interface as shown in Fig. 1.23.

The angle of incidence is given by

tan θ1=
dz

dr
.

From the law of refraction, the angle of refraction is given by

sin θ2 =
n1 sin θ1

n2
.
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z

r

O

n1 n2

F

f

(r,z)θ1
θ2

θ1 α

Fig. 1.23: Refraction of a light ray by the interface between two media.

For the light ray to be focused at F , we must have θ2 = θ1 − α

with

tanα=
r

f−z
, sinα=

r√
r2+(f−z)2

, cosα=
f − z√

r2+(f−z)2
.

Taking the sine of both sides of the relation θ2 = θ1−α, we have

sin θ2 = sin(θ1 − α),

n1 sin θ1
n2

= cosα sin θ1 − sinα cos θ1,

tan θ1 = − sinα

n1/n2 − cosα
,

dz

dr
= − r

(n1/n2)
√
r2 + (f − z)2 − (f − z)

. (1.43)

To simplify the above equation, we introduce two new variables

η and ρ that are related to z and r through

η = f − z, ρ =
√
r2 + (f − z)2.

We then have

d

dz
= − d

dη
,

dρ

dη
= − d

dz

√
r2 + (f − z)2 = −1

ρ

(
r
dr

dz
− η

)
.

Plugging the expression for rdr/dz from Eq. (1.43) into the

above equation, we have

dρ

dη
=

n1

n2
.
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Integrating the above equation under the boundary condition

that ρ|η=f = f , we have

ρ− f =
n1

n2
(η − f) .

Inserting the expressions of η and ρ in terms of r and z into the

above equation, we have√
r2 + (f − z)2 − f = −n1

n2
z.

Solving for z from the above equation, we obtain

z =
n2f

n2 + n1

[
1±
√
1− (n2 + n1)r2

(n2 − n1)f2

]
.

The result with the plus sign in the above equation is not con-

sistent with the boundary condition z|r=0 = 0. Thus, the shape

of the interface is given by

z =
n2f

n2 + n1

[
1−
√
1− (n2 + n1)r2

(n2 − n1)f2

]
. (1.44)

(2) The presence of the square root in Eq. (1.44) indicates that the

values of r can not be larger than a certain value rmax that can

be obtained by setting the quantity under the square root to

zero. We then have

1− n2 + n1

n2 − n1

r2max

f2
= 0

from which we have

rmax =

√
n2 − n1

n2 + n1
f. (1.45)

1.30 *Spherical drop of water. Consider a light ray enters and leaves

a spherical drop of water of index n as shown in Fig. 1.24.

(1) What is the angle of incidence β on the back surface?

(2) What is the angle of deflection γ when the ray exits the water

drop?

(3) What is the angle of incidence α that yields the smallest deflec-

tion?

(1) From Fig. 1.24, we see that the angle of incidence β on the back

surface is equal to the angle of refraction at pointA (the entrance
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O

n

Aα

β

Bβ

β

C

β

α

D

γ

Fig. 1.24: Reflection and refractions of a light ray on a spherical drop of water.
The equal angles have been identified.

point of the light ray into the water drop). Applying the law of

refraction to the refraction at A, we have sinα = n sinβ from

which it follows that

β = arcsin

(
sinα

n

)
. (1.46)

(2) From triangles ΔABD and ΔCBD, we have

γ = π − 2
[
β − (α− β)

]
= π + 2α− 4β

= π + 2α− 4 arcsin

(
sinα

n

)
. (1.47)

(3) Differentiating γ with respect to α and setting the result to zero,

we obtain

dγ

dα
= 2− 4

cosα√
n2 − sin2 α

= 0

from which we obtain

cos2 α =
n2 − 1

3
,

α = arccos

√
n2 − 1

3
. (1.48)

1.31 **Deflection of a light ray passing through a prism. Consider

a light ray passing through an isosceles prism of refractive index n

and refracting angle α. For the refracting angle α of the prism and

other angles, see Fig. 1.25. The deflection angle of the light ray is

denoted by γ. The refractive index of air is taken to be unity.

(1) Express γ in terms of α, θ1, and θ′2.
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α

θ1 θ2
′

n

γ

Fig. 1.25: Prism and light ray passing through it.

(2) Find a relation between γ and α for a minimum value of γ.

(3) If the light ray passes through the prism symmetrically, show

that the relation derived in (2) is satisfied.

(4) Show that γ ≈ (n− 1)α if both α and θ1 are small.

(1) With the angles of incidence and refraction at the front and back

surfaces of the prism shown, the prism and the light ray passing

through it are given again in Fig. 1.26. For the convenience of

showing the angles more clearly, we have used a large angle of

incidence in Fig. 1.26 which is exact in the sense that the path

of the light ray is constructed exactly in accordance with the

law of refraction.

α

θ1 θ2 α/2

θ1−
θ2

θ1
′

θ2
′

θ2
′−θ1

′

α/2

n

γ

Fig. 1.26: Prism and light ray passing through it with all the angles of incidence
and refraction shown.

From Fig. 1.26, we see that γ can be expressed in terms of angles

θ1, θ2, θ
′
1, and θ′2 as follows

γ = θ1 − θ2 + θ′2 − θ′1.

 P
ro

bl
em

s 
an

d 
So

lu
tio

ns
 in

 U
ni

ve
rs

ity
 P

hy
si

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 3

7.
23

7.
11

1.
69

 o
n 

11
/1

7/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 30, 2017 17:21 ws-book9x6 Problems in University Physics with Solutions–9142 univ-phys-sols page 33

Geometric Optics 33

From Fig. 1.26, we can infer the following relation between an-

gles θ′1 and θ2

θ′1 + θ2 = α. (1.49)

We thus have

γ = θ1 − θ2 + θ′2 − (α− θ2) = θ1 + θ′2 − α. (1.50)

(2) To minimize γ, we differentiate γ with respect to θ1 and set the

result to zero. We have

0 =
dγ

dθ1
= 1 +

dθ′2
dθ1

. (1.51)

To evaluate the right hand side of the above equation, we write

down the law of refraction for refractions at the front and back

surfaces of the prism and have

sin θ1 = n sin θ2, (1.52)

n sin θ′1 = sin θ′2. (1.53)

Making use of Eqs. (1.53), (1.49), and (1.52) in this order, we

have

dθ′2
dθ1

= n
cos θ′1
cos θ′2

dθ′1
dθ1

= −ncos θ
′
1

cos θ′2

dθ2
dθ1

= −cos θ′1 cos θ1
cos θ′2 cos θ2

.

Inserting the above result into Eq. (1.51) yields

cos θ1 cos θ
′
1 = cos θ2 cos θ

′
2.

Multiplying Eq. (1.52) with Eq. (1.53), we have

sin θ1 sin θ
′
1 = sin θ2 sin θ

′
2.

Adding up the above two equations yields

cos (θ2 − θ′2)− cos (θ1 − θ′1) = 0.

Making use of the identity cosα − cosβ = −2 sin[(α +

β)/2] sin[(α− β)/2] from elementary trigonometry, we have

sin
θ2 − θ′2 + θ1 − θ′1

2
sin

θ2 − θ′2 − θ1 + θ′1
2

= 0.

Inserting Eq. (1.49) into the second factor on the left hand side

of the above equation yields

sin
θ2 − θ′2 + θ1 − θ′1

2
sin

θ1 + θ′2 − α

2
= 0.
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Making use of Eq. (1.50), we obtain

sin
θ2 − θ′2 + θ1 − θ′1

2
sin

γ

2
= 0.

Because γ can not be zero or 2π, we must have θ2−θ′2+θ1−θ′1 =

0, that is,

θ1 − θ′2 = θ′1 − θ2. (1.54)

To derive the desired relation between γ and α, we again make

use of Eqs. (1.52) and (1.53). Interchanging the two sides of

Eq. (1.53) and then adding the resultant equation to Eq. (1.52),

we obtain

sin θ1 + sin θ′2 = n (sin θ2 + sin θ′1) .

Making use of the identity sinα+sinβ = 2 sin[(α+β)/2] cos[(α−
β)/2], we have

sin
θ1 + θ′2

2
cos

θ1 − θ′2
2

= n sin
θ2 + θ′1

2
cos

θ2 − θ′1
2

.

Due to Eq. (1.54), the second factor on the left hand side cancels

the second factor on the right hand side in the above equation,

which leads to

sin
θ1 + θ′2

2
= n sin

θ2 + θ′1
2

.

Making use of Eqs. (1.49) and (1.50), we obtain

sin
γ + α

2
= n sin

α

2
(1.55)

which is the desired relation.

(3) If the light ray passes through the prism symmetrically, we have

θ1 = θ′2, θ2 = θ′1.

Because of Eq. (1.49), we have

θ2 = θ′1 =
α

2
.

The deflection angle is now given by

γ = θ1 + θ′2 − α = 2θ1 − α.

We then have

sin
γ + α

2
= sin θ1 = n sin θ2 = n sin

α

2
.
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Therefore, the relation in Eq. (1.55) is satisfied if the light ray

passes through the prism symmetrically.

(4) If both α and θ1 are small, then θ2, θ
′
1, and θ′2 are also small. In

this case, Eqs. (1.52) and (1.53) become

θ1 ≈ nθ2, nθ′1 ≈ θ′2.

Making use of the above two equations and Eq. (1.49), θ′1+θ2 =

α, we have

γ = θ1 + θ′2 − α ≈ nθ2 + nθ′1 − α

= n(θ2 + θ′1)− α = nα− α = (n− 1)α. (1.56)

1.32 **Thin biconcave lens with one surface silvered. A convex

spherical mirror is obtained by coating with silver one of the two

surfaces of a thin biconcave lens whose refractive index is n and

whose two surfaces have the same radius of curvature R. What is

the focal length of the resultant convex spherical mirror?

For clarity, we illustrate the geometry in Fig. 1.27 for a thick bicon-

cave lens of thickness t. However, our calculations will be performed

for a thin biconcave lens with t → 0. We follow an incident light ray

parallel to the optical axis and find the point where the backward

extension of the light ray intersects the optical axis when it emerges

from the lens. We will make use of the paraxial approximation from

the beginning of our calculations.

The light ray enters the lens at point P , is reflected at point Q on

the back surface, and emerges from the lens at point S on the front

surface. The backward extension of the emerging ray intersects the

optical axis at point F that is the focal point of the convex spherical

mirror. Because point F is to the right of point O, the focal length

f is negative and is given by f = −OF . Because the focal length

is negative, the resultant mirror is a convex spherical mirror as we

have been referring to.

Assume that the incident ray is a distance of h above the optical axis

with h � R. The limit of h → 0 will be taken at the end of our cal-

culations. The coordinates of point P in the paraxial approximation

are given by

xP =
√
R2 − h2 −R ≈ − h2

2R
,

yP = h.
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x

y

OC1 C2F
α

γ βPθ1

θ2 Q
θ3

θ3
S

θ4

Light ray

t

S
ilver

coating

Fig. 1.27: Determination of the focal length of a biconvex lens with one surface
coated with silver.

The value of angle α in the paraxial approximation is given by

α = arctan
yP

R− |xP | ≈
yP
R

≈ h

R
.

The angle of incidence θ1 at point P is equal to α, θ1 = α. From the

law of refraction, we have

θ2 ≈ sin θ2 =
sin θ1
n

≈ θ1
n

≈ h

nR
.

We now examine the reflection at point Q. First, we find the coordi-

nates of point Q. The path of the light ray from P to Q is described

by y = tan (θ1 − θ2) (x− xP )+yP and the back surface of the lens is

described by (x−R)2+ y2 = R2. Solving for x and y from these two

equations with the application of the paraxial approximation yields

xQ ≈ h2

2R
,

yQ ≈ h.

The angle β is then given by

β ≈ tanβ =
yQ

R− xQ
≈ yQ

R
≈ h

R
.

The angle of incidence θ3 at point Q is

θ3 = β + θ1 − θ2 ≈ (2n− 1)h

nR
.

We next examine the refraction at point S. Again, we first find

the coordinates of point S. The path of the light ray from Q to
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S is described by y = − tan (β + θ3) (x− xQ) + yQ and the front

surface of the lens is described by (x+R)2 + y2 = R2. Solving for x

and y from these two equations with the application of the paraxial

approximation yields

xS ≈ − (n+ 1)h2

2nR
,

yS ≈ h.

From the above results, we obtain the following value for angle γ

γ = arctan
yS

R− |xS | ≈
yS
R

≈ h

R
.

The angle of incidence at point S is given by

θ3 + β + γ ≈ (2n− 1)h

nR
+

2h

R
=

(4n− 1)h

nR
.

From the law of refraction, the angle of refraction θ4 at point S is

given by

θ4 ≈ sin θ4 = n sin(θ3 + β + γ) ≈ n(θ3 + β + γ) ≈ (4n− 1)h

R
.

The slope of the outgoing ray is then given by

ko = − tan(θ4 − γ) ≈ −(θ4 − γ) ≈ −2(2n− 1)h

R
.

The equation for the outgoing ray reads

y = ko(x − xS) + yS .

The x-coordinate of the focal point F can be obtained by setting

y = 0 in the above equation. We have

xF = −yS
ko

+ xS ≈ R

2(2n− 1)
− (n+ 1)h2

2nR
≈ R

2(2n− 1)
.

In the limit of h → 0, the above result for xF becomes exact. Hence,

the focal length of the resultant convex spherical mirror is given by

f = −OF = −xF = − R

2(2n− 1)
. (1.57)

1.33 **Thin biconvex lens with one surface silvered. A concave

spherical mirror is obtained by coating with silver one of the two

surfaces of a thin biconvex lens whose refractive index is n and whose
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two surfaces have the same radius of curvature R. What is the focal

length of the resultant concave spherical mirror?

To find the focal point and the focal length of the resultant concave

spherical mirror, we follow an incident light ray parallel to the optical

axis and find the point where the light ray intersects the optical axis

when it emerges from the lens. The relevant geometry is illustrated

in Fig. 1.28 for a thick biconconvex lens of thickness t. We will apply

the paraxial approximation from the beginning of our calculations.

x

y

OC2 C1F

α

γ

β

P
θ1

θ2 Q

θ3

θ3

S
θ4

Light ray

t

Silver
coating

Fig. 1.28: Determination of the focal length of a biconvex lens with one surface
coated with silver.

The light ray enters the lens at point P , is reflected at point Q on

the back surface, and emerges from the lens at point S on the front

surface. The emerging ray intersects the optical axis at point F that

is the focal point of the concave spherical mirror. Because point F

is to the left of point O, the focal length f is positive and is given by

f = FO. Because the focal length is positive, the resultant mirror is

a concave spherical mirror as we have been referring to.

Assume that the incident ray is a distance of h above the optical axis

with h � R. The limit of h → 0 and t → 0 will be taken at the

end of our calculations. The coordinates of point P in the paraxial
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approximation are given by

xP = −
√
R2 − h2 +R− t

2
≈ h2

2R
− t

2
,

yP = h.

Because the h-dependence of xP is of the second order in h, xP ≈
−t/2 up to the first order in both t and h.

The value of angle α in the paraxial approximation is given by

α = arctan
yP

R− (t/2− |xP |) ≈ yP
R − h2/2R

≈ h

R
.

The angle of incidence θ1 at point P is equal to α, θ1 = α. From the

law of refraction, we have

θ2 ≈ sin θ2 =
sin θ1
n

≈ θ1
n

≈ h

nR
.

We now examine the reflection at point Q. First, we find the co-

ordinates of point Q. The path of the light ray from P to Q is

described by y = − tan (θ1 − θ2) (x− xP ) + yP and the back surface

of the lens is described by (x + R − t/2)2 + y2 = R2. Solving for x

and y from these two equations with the application of the paraxial

approximation yields

xQ ≈ t

2
− h2

2R
,

yQ ≈ h.

Because the h-dependence of xQ is of the second order in h, xQ ≈ t/2

up to the first order in both t and h.

The angle β is then given by

β ≈ tanβ =
yQ

R− (t/2− xQ)
≈ yQ

R
≈ h

R
.

The angle of incidence θ3 at point Q is

θ3 = β + θ1 − θ2 ≈ (2n− 1)h

nR
.

We next examine the refraction at point S. Again, we first find the

coordinates of point S. The path of the light ray from Q to S is

described by y = tan (β + θ3) (x− xQ) + yQ and the front surface of

the lens is described by (x − R + t/2)2 + y2 = R2. Solving for x
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and y from these two equations with the application of the paraxial

approximation yields

xS ≈ − t

2
+

(n+ 1)h2

2nR
,

yS ≈ h.

Because the h-dependence of xS is of the second order in h, xS ≈
−t/2 up to the first order in both t and h. From the above results,

we obtain the following value for angle γ

γ = arctan
yS

R − (t/2− |xS |) ≈ yS
R

≈ h

R
.

The angle of incidence at point S is given by

θ3 + β + γ ≈ (2n− 1)h

nR
+

2h

R
=

(4n− 1)h

nR
.

From the law of refraction, the angle of refraction θ4 at point S is

given by

θ4 ≈ sin θ4 = n sin(θ3 + β + γ) ≈ n(θ3 + β + γ) ≈ (4n− 1)h

R
.

The slope of the outgoing ray is then given by

ko = tan(θ4 − γ) ≈ θ4 − γ ≈ 2(2n− 1)h

R
.

The equation for the outgoing ray reads

y = ko(x − xS) + yS .

The x-coordinate of the focal point F can be obtained by setting

y = 0 in the above equation. We have

xF = −yS
ko

+ xS ≈ − R

2(2n− 1)
+

t

2
− (n+ 1)h2

2nR
→ − R

2(2n− 1)
,

where we have taken the limit of t → 0 and h → 0. Therefore, the

focal length of the resultant convex spherical mirror is given by

f = FO = −xF =
R

2(2n− 1)
. (1.58)

1.34 **Ray-tracing calculation for a planoconvex lens. The ge-

ometrical spot size produced by a collimated beam incident on a

planoconvex lens can be estimated through an exact ray-tracing cal-

culation. Assume that the refractive index, radius of curvature, di-

ameter, and center thickness of the lens are respectively n = 1.5,
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sF t
D
/2

sF
′

Pθ1

θ2

I

F ′F

P ′ θ1−θ2

θ2
′

R O
x

y

Fig. 1.29: Planoconvex lens and path of a light ray through the lens. For clarity,
the thickness of the lens has been exaggerated.

R = 0.050 m, D = 0.060 m, and t = 0.015 m. The refractive index

of air is taken to be unity. Consider the incoming ray parallel to the

optical axis and incident at the edge of the lens as shown in Fig. 1.29.

(1) Find the coordinates of the entrance point into the lens and the

angles of incidence and refraction at the front surface.

(2) Find the angles of incidence and refraction at the back surface

and the coordinates of the exit point from the lens.

(3) Find the effective focal length f , the front focal length sF , and

the back focal length sF ′ .

(4) Find the height h = F ′I of the ray in the paraxial focal plane.

The height h can be used as an estimate of the geometrical spot

size.

(1) We use the coordinate system given in Fig. 1.29. The y-

coordinate of the entrance point P is obviously yP = D/2 =

0.030 m with D the given diameter of the lens, D = 0.060 m.

The x-coordinate of the entrance point P is then given by

xP = −
√
R2 − y2P = −

√
R2 −D2/4 = −0.04 m. (1.59)

The angle of incident at P is given by

θ1 = arctan

(
yP
|xP |

)
≈ 36.870o. (1.60)

From the law of refraction, the angle of refraction at P is given

by

θ2 = arcsin

(
sin θ1
n

)
≈ 23.578o. (1.61)

(2) From the geometry in Fig. 1.29, we see that the angle of inci-

dence at P ′ is given by

θ′1 = θ1 − θ2 ≈ 13.292o. (1.62)
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From the law of refraction, the angle of refraction at P ′ is given
by

θ′2 = arcsin (n sin θ′1) ≈ 20.174o. (1.63)

The thickness of the lens at P is

tP = R− |xP | = R+ xP = 0.010 m.

Thus, the coordinates of P ′ are given by

xP ′ = xP + tP = −0.030 m, (1.64a)

yP ′ = yP − tP tan(θ1 − θ2) ≈ 0.028 m. (1.64b)

(3) The effective focal length can be obtained from Lensmaker’s

equation. For this planoconvex lens, R1 = R = 0.05 m, R2 = ∞,

t = 0.015 m, and n = 1.5. From Lensmaker’s equation, we have

1

f
= (n− 1)

[
1

R1
− 1

R2
+

(n− 1)t

nR1R2

]

= (1.5− 1)×
[

1

0.05
− 0 + 0

]
= 10 m−1

from which we obtain

f = 0.1 m. (1.65)

The front focal length is given by

sF = f

[
1 +

(n− 1)t

nR2

]
= 0.1× [ 1 + 0 ] = 0.1 m. (1.66)

Thus, the front focal length is equal to the effective focal length.

The back focal length is given by

sF ′ = f

[
1− (n− 1)t

nR1

]

= 0.1×
[
1− (1.5− 1)× 0.015

1.5× 0.05

]
= 0.09 m. (1.67)

(4) To find the value of h = F ′I, we first find the y-coordinate of

point I. From Fig. 1.29, we have

yI = yP ′ − sF ′ tan θ′2 ≈ 0.028− 0.09× tan 20.174o ≈ −0.005 m.

Thus,

h = F ′I = −yI ≈ 0.005 m. (1.68)
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In order to see if large rounding errors have been introduced into

the above result, we insert all the previously-obtained analytical

results into the expression of yI less the expression of sF ′ since

the numerical value from its expression gives the position of the

desired paraxial focal plane. We have

h = sF ′ tan θ′2 − yP ′

= sF ′ tan {arcsin [n sin(θ1 − θ2) ]} − yP + tP tan(θ1 − θ2)

= −yP +
nsF ′ sin(θ1 − θ2)√
1− n2 sin2(θ1 − θ2)

+ tP tan(θ1 − θ2)

= −yP +
nsF ′ sin[arcsin(D/2R)− arcsin(D/2nR)]√
1− n2 sin2[arcsin(D/2R)− arcsin(D/2nR)]

+ tP tan

(
arcsin

D

2R
− arcsin

D

2nR

)
. (1.69)

In the above expression of h, the previously-given values of quan-

tities yP and tP are exact. Evaluating h from the above expres-

sion, we obtain h ≈ 0.00543 m which is in agreement with the

previously-obtained value.
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