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Chapter 1

Geometric Optics

1.1 Number of wavelengths between two points. A light wave of

vacuum wavelength 500 nm travels from point A to point B that is a

distance of 0.01 m away.

(1) If the space containing points A and B is vacuum, how many
wavelengths span the space from A to B?

(2) If the region between points A and B is completely filled with
glass of refractive index n = 1.5, how many wavelengths span the
space from A to B?

Let Dap be the distance between points A and B, A\ the vacuum
wavelength, and ) the wavelength in glass.
(1) In vacuum, the number of wavelengths that span the space from
Ato Bis
Dap 0.01 4
== T 2
(2) Note that the frequency of a light beam remains unchanged no
matter in which medium it travels. The wavelength of light in

glass is given by

v_dl_ﬂ:A

T n n’
where v is the speed of light in glass and f and f’ are respectively
the frequencies of light in vacuum and in glass with f' = f. If
the region between points A and B is completely filled with glass,
the number of wavelengths that span the space from A to B is
given by

)\/

_Dap _ Dap

o =y =N =15x2x 100 =3 x 10"

N/
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1.2 Dispersion of fused silica. The wavelength-dependence of the re-
fractive index of fused silica is given by

BN BoA2 B’
2:1 1 2 3
et T e e, Te—oy

where B; = 0.696, By = 0.407, By = 0.897, Cy = 4.679 x 103 nm?,
Cy = 1.351 x 10* nm?2, and C5 = 9.793 x 107 nm?.

(1)

(2)
(3)
(4)

At what wavelengths, does n diverge? If n is infinite for light of a
particular wavelength, can the light of this wavelength propagate
in fused silica?

At what wavelengths, is n equal to unity?

What is the value of n as A — oo?

Plot n as a function of A in the visible region for A from 400 nm
to 700 nm.

(1)

(2)

From the given expression of n in terms of A, we see that n di-
verges at A ~ 6.840 x 10', 1.162 x 10%, and 9.896 x 10® nm. If
n = oo for light of a particular wavelength, then v = ¢/n = 0,
which implies that the light of this wavelength can not propagate
in fused silica and will be absorbed.
To find the wavelengths at which n = 1, we set the given expres-
sion for n? to unity and obtain

9 By By B3

A <A2—01 N _a +/\2—Cg> =0
From the above equation, we see that n =1 at A\; = 0. The other
wavelengths at which n = 1 are to be solved from
Bl BQ B3
JERGARID CRrs A oA

The above equation is actually a quadratic algebraic equation in
A2, Simplifying the above equation, we have

At + BN+ =0, (1.1)

=0.

where
o= By + By + Bs,
B = —[B1(C2+C3)+By(C3+C1)+Bs(C1+Cs)],
v = B1C3C3 + B3C3Cy + B3C1Cs.

Solving for A% from Eq. (1.1), we obtain

A2:§%[—ﬁi(52—4wﬁ”2]. (1.2)
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Evaluating the above expression using the given values of con-
stants, we obtain the following two positive solutions for A

A2 = 1.013 x 10* nm, A3 = 7.349 x 10° nm. (1.3)
In summary, the wavelengths at which n =1 are
A1 =0, (1.4a)
A2 = 1.013 x 10% nm, (1.4b)
A3 = 7.349 x 10° nm. (1.4c)

(3) As A — oo, n? is given by
n?=1+ B; + By + B3 = 3.
Thus, n — 1.732 as A — oo.
(4) The plot of n as a function of A in the visible region for A from
400 nm to 700 nm is given in Fig. 1.1 from which we see that n
is a monotonically decreasing function of A in the visible region.

n
2.16 Fused silica
2.14 —
2.12
‘ ‘ ‘ A [nm]
400 500 600 700

Fig. 1.1: Refractive index of fused silica in the visible region.

1.3 Spread of the components of a light ray through a prism.
Consider the passage of a light ray with two monochromatic compo-
nents through a trihedral prism with refracting angle o. The refractive
indices of the prism with respect to the two components are respec-
tively n and n + An with An small. The prism is so oriented that
the deflection angle is minimum. Find the angle Af between the two
components of the light ray after its passing through the prism.

Let 6; be the angle of incidence into the prism. Let 6 be the angle
of refraction out of the prism corresponding to the refractive index n.
We have

y=0,+6—a.
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1.4

From the above equation, we have
A0 = A~.

For the minimum deflection, we also have

.Yt .«
sin = nsin —.
2
Differentiating the above equation with respect to n, we have
1 ¥+ ady e
— cos — =sin—
2 2 dn 2’
- 2sin(a/2) Am — 2sin(a/2) An.
cos{(y + @) /2] 1 —n2sin’(a/2)
We thus have
2 si 2
A=Ay = S@/2) A, (1.5)

1 —n2sin’(a/2)

Dispersion on an equilateral prism. A beam of white light is
incident on an equilateral prism [Ref. Fig. 1.2] made of glass with
n = 1.67 at A = 400 nm and n = 1.61 at A = 750 nm. Assume that
the red rays in the prism are parallel to the bottom face. What is the
angle between the transmitted red and violet beams?

Air Glass prism

.ot
et/ Req
V.

10 /e[

Fig. 1.2: Dispersion of white light on an equilateral prism.

Shown in Fig. 1.3 is the ray diagram for light of a certain wavelength
for which the refractive index of the prism is n. The angles of incidence
and refraction at the entrance point are denoted respectively by 6; and
02; they are denoted respectively by 6] and 6} at the exit point.
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Fig. 1.3: Ray diagram for light for which the refractive index of the prism is
equal to n.

1.5

Since the red light in the prism propagates parallel to the bottom face
of the prism, the angle of refraction at the entrance point is given by
0> = 30°. From the law of refraction nj sinf; = ns sin 5, we have

S 1.61 x si ©
f; = arcsin (rngmﬂg> ~ arcsin <6X81n30) ~ 53.61°, (1.6)

ny 1.00
where we have taken the refractive index of air to be approximately
unity.
From the geometry in Fig. 1.3, we can infer that
07 = 60° — 0. (1.7)

For light for which the refractive index of the prism is n, the angle of
refraction 05 at the exit point is given by

0, = arcsin (nsin#}) = arcsin [nsin (60° — 62)] (1.8)

with 6, given by

in 6
0y = arcsin (sm 1) . (1.9)
n
The angle between the transmitted red and violet beams is given by
A92 = 9/27violet - 9/27red' (110)

Evaluating the angles 02, 0], 65, and Afy using the value of 6; in
Eq. (1.6) and Egs. (1.7) through (1.9), we obtain the results in Ta-
ble 1.1 for red and violet beams.

From the values of ¢ in Table 1.1 and Eq. (1.10), we have

Ay = 05 sioter — 05 roq = 59.84 — 53.61 = 6.23°. (1.11)

Path length in a glass plate. A laser beam is incident on the top
surface of a parallel glass plate of thickness ¢ and refractive index n.



Problems and Solutions in University Physics Downloaded from www.worl dscientific.com
by 37.237.111.69 on 11/17/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

6 Problems in University Physics with Solutions—Optics, thermal € modern physics

Table 1.1: Values of relevant angles for red and violet beams through the prism.

Beam | n  6:[°] 61[°] 5[]
Red | 1.61 30.00 30.00 53.61
Violet | 1.67 28.82 31.18 59.84

=t —

Fig. 1.4: Laser beam passing through a parallel glass plate.

Find the lateral displacement § of the laser beam and the true length d
of the path through the glass in terms of the angle of incidence 6;, the
thickness ¢ and the refractive index n4 of the plate, and the refractive
index n, of air. What is the optical path length in the glass?

Applying the law of refraction to the refraction at the top surface, we
have ngsin6; = ngsind,. Thus,

a i 91 1 .
sinf, = ﬂ, cosf, = — (nz — n? sin? 91») vz,
g Ng
The true length d of the path is given by
t ngt
d= = g : (1.12)
cos 0, (ng — n2 sin2 01_)1/2

The lateral displacement ¢ of the laser beam is given by

0 =t (tanb; — tanb, ) cosb;

a 01 .
—t|1- fla €08 sin 6. (1.13)

(n2 —n2 sin® 6;) 1z

The optical path length S in the glass is given by
ngt
5 )1/2'

2 in2p.
(ng—nabln 0;

S =ngd= (1.14)
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1.6 Reflection and refraction of light on a slab of glass. Consider
the reflection and refraction of monochromatic light on the interfaces
between air of refractive index n, =~ 1.00 and a slab of glass of re-
fractive index ngy = 1.50 as shown in Fig. 1.5. The upper and lower
interfaces are parallel. The angle of incidence 6 is 50°.

Fig. 1.5: Reflection and refraction of monochromatic light on the interfaces
between air and a slab of glass.

(1) Find the angle of refraction 6 at the upper interface.
(2) Find the angle of refraction 63 at the lower interface.

(1) From the law of refraction (Snell’s law) n,sinf; = nysinfs, we
have

o Sin @ 1. i °
fy = arcsin <w> ~ arcsin (M> ~ 30.71°.
Ng 1.50

(2) Making use of the fact that the angle of incidence at the lower
interface is equal to the angle of refraction at the upper interface,
we have ngsin 6y = n, sin 03 from the law of refraction. Thus,

in 0 1. i T1°
03 = arcsin [ 2272 ) & arcsin LoD sm 0TI _ goo.
Ng 1.00

That 63 = 6, is required by the fact that the light ray can be
traced back. This fact can be directly used to obtain the value of
0s.

1.7 Light propagation above the surface of the Earth. Consider
the propagation of a light ray above the surface of the Earth.
(1) If the light ray is propagating in a horizontal direction above
the surface of the Earth with the refractive index of air given by
1.500 x 1077 m~!, what is the radius of curvature of the light
ray?
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(2)

For the light ray to be able to travel around the earth along a
circular path, what is the value of the gradient of the refractive
index along the circular path?

(1)

The refractive index n of air above the surface of the Earth de-
pends only on the radial distance r from the center of the Earth,
n = n(r). Assume that the light ray travels horizontally at the
radial distance R from the center of the Earth.

Fig. 1.6: Propagation of a light ray above the surface of the Earth.

At the radial distance r with » 2> R, the angle 6 that the light
ray makes with the normal of the spherical surface of radius r is
given through

sinf = —.
r

Note that € is the angle of incidence of the light ray onto the
spherical surface of radius r. Differentiating the above equation
with respect to r yields
de R
COSGE = (1.15)
The above two results will be used in the following derivations to
relate 6 to r.

From the law of refraction, we have
nsinf = constant.
Differentiating the above equation with respect to r yields
d de
sin0d—:+ncos0% =0, (1.16)
Rdn R 0

— n
r dr T
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o
~ dn/dr’
For r = R, we have R = n/(dn/dR). For dn/dR = 1.500 x
107" m~! and n =~ 1, we have
L 6
R~ oo & 6.667 x 10° m = 6667 k. (1.18)

We return to Eq. (1.16). Inserting Eq. (1.15) into Eq. (1.16), we
obtain

r (1.17)

. dn R
sin 9% = 0.
Solving for dn/dr from the above equation yieds
dn nRk

dr ~ r2sing’
For the light ray to be able to travel around the Earth along a
circular path, we must have siné = 7/2. We thus have

dn nR

dr — 2’
For r = R = Rgarth, we have
dn  n
dREarth  Reartn
Making use of Rgartn ~ 6.4 x 10% and n ~ 1, we have

dn N 1
dRpartn 6.4 x 106

~1.6x10""m™L (1.19)

1.8 Object in water. Suppose that an object is put into a swimming
pool filled with water. We consider the apparent depth of the object.

(1)
(2)
(3)

Derive an expression for the apparent depth of a point on the
object at an arbitrary angle of refraction from the water into air.
Find the apparent depth of the object if it is looked at straight
down from a position above the water.

Plot the ratio of the apparent depth to the true depth as a func-
tion of the angle of refraction from the water into air.

(1)

We only consider non-internal reflections of light from the object.
The reflections of light from two symmetric points of a flat object
are schematically shown in Fig. 1.7.
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Water surface

Fig. 1.7: Flat object in water.

The true depth of the object is denoted by D; while its apparent
depth is denoted by D,. The apparent position of the object
is determined by the tangentially contacting points of the raised
virtual object with the extensions of light rays from the water
into air as indicated by the oblique dotted lines in Fig. 1.7. Note
that B'C’ = BC.

Let n, and n, be respectively the refractive indices of water and
air. The light reflected from the object will be refracted at the
surface of the water before it reaches the eye.

From the right triangle AB’C’ A, we have

D, = AB’ = B'C’ cot 0.

Making use of the fact that B'C’ = BC, we have
D, = BC cot 6.
From the right triangle ABC' A, we have
BC = ABtan#, = D, tan 6.
Thus,
D, = D, tan 6, cot 5.

From the law of refraction, we have n, sinf; = ngsinfs. Ex-
pressing sin 6y in terms of sin s, we have sin; = (n,/ny, ) sin 0.
In terms of ny, N4y, 02, and Dy, we can express D, as
.92 1/2
naDicoslly  ngDy (1 —sin® )

D, = = . 1.20
Ty COS 07 (n%} _ ng sin2 92) 1/2 ( )
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(2) For looking straight down at the object from a position above the
water, we have f2 — 0. From Eq. (1.20), we see that

. 1.000293 3
"ap, = Dy ~0.75D; = <Dp. (1.21)

Yoy e ' 1.333

Thus, the apparent depth is about three quarters of the true depth
if the object is looked straight down from a position above the
water.

(3) The plot of D,/D; as a function of s is given in Fig. 1.8 from
which we see that the apparent depth decreases monotonically as
05 increases. This is in consistency with our daily-life experiences.

D, /D,

0.75
0.50

0.25

0.00 ‘ ‘ 01°]
0 30 60 90

Fig. 1.8: Plot of D,/D; as a function of 5.

1.9 Refractions through a series of parallel planar interfaces.

Consider the refractions of a monochromatic light beam through N
parallel planar interfaces between N + 1 layers of media numbered se-
quentially as shown in Fig. 1.9. The angle of incidence in the leftmost
layer (layer 1) of refractive index n; onto the interface between layers
1 and 2 is 6;. The angle of refraction into the rightmost layer (layer
N + 1) of refractive index ny1 is Oy11. The angles of incidence and
refraction in layer j (1 < j < N) are equal as indicated in Fig. 1.9.
Express 641 in terms of 6; and refractive indices ni, no, -+, ny41.

Applying the law of refraction to the refraction on the interface be-

tween layers 1 and 2, we have nj;sinf; = nosinfy from which we
obtain
. [ mnisinb;
0y = arcsin | ———— | .
n2
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Ny Ny Ny

Fig. 1.9: Refractions of light through a series of parallel planar interfaces.

Applying the law of refraction to the refraction on the interface be-
tween layers 2 and 3, we have nssinfls = ngsinfs from which we

obtain
. [ nasinfy . [ ningsinb;
03 = arcsin | ———— | = arcsin [ —— | .
n3 nansg

Continuing in this manner until the last interface between layers N
and N + 1, we obtain

. [ ning---nysinf; . [ mnysinf
On+1 = arcsin ( ) = arcsin ( . (1.22)
nansz - -NN+1 NN+1

From the above result, we see that the angle 6.1 does not depend
on the refractive indices of the intermediate layers between the left-
most and rightmost layers. Mathematically, this is because the factors
arising from the intermediate layers are canceled completely in the suc-
cessive applications of the law of refraction. Physically, this is because
a light ray can be traced back and, thus, all the intermediate layers
can be abstracted into an interface of zero thickness between layers 1
and N + 1.

1.10 Concave mirror. For a concave mirror of focal length f, what is
the object distance d, such that the image distance is equal to the
object distance?

Inserting d; = d, into the mirror equation 1/d, + 1/d; = 1/f, we
have
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from which it follows that

dy, = 2f. (1.23)

Focal length of a concave mirror. When an object is a certain
distance in front of a concave mirror, the magnification of the image
is M. If the object is moved a distance of ¢ from its original location,
the magnification of the image becomes Ms. What is the focal length
of the concave mirror?

Let f denote the focal length of the concave mirror. Assume that the
object was originally a distance of d, in front of the mirror. From
the mirror equation 1/d, + 1/d; = 1/f, we have

B 1 _dof

B 1/f_1/d0 B do_f.

The magnification of the image is given by

d;

d; /
My =——=- . 1.24
1 do do o f ( )
For the object at d,, = d, 4+ ¢, we have from the mirror equation
d = 1 = fldo +0)
Yol f=1/d do+0—f
The magnification of the image is now given by
d; f
My=—-"+=————. 1.25
A 12
Eliminating d, from Egs. (1.24) and (1.25), we obtain
Mo My
=— /. 1.26
f=in (1.26)

Observing oneself in a mirror. A person of height h from the
floor to the eye level stands in front of a plane mirror with the top
at the eye level of the person. What is the minimum length of the
mirror for the person to be able to see in the mirror the shoes the
person is wearing as much as the person can possibly see?

The condition we will use to find the minimum length of the mirror
is that light reflected from the shoes can barely reach the person’s
eyes. Let £ be the length of the mirror. Let § be the distance from the
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1.13

Ground

Fig. 1.10: Geometry for finding the minimum length of the mirror.

person to the mirror, with § — 0. The relevant geometry is shown
in Fig. 1.10.

The angle of incidence of light reflected from the foremost part of
the bottom of a shoe onto the bottom edge of the mirror is given by

tanf; = u

0

The angle of reflection of light from the bottom edge of the mirror
directed towards an eye of the person is given by

14
/—7
tanf) = 5

From the law of reflection, we have 6; = 6] which, for £ = £,;,, leads
to

h— ‘gmin o émin

55

from which we obtain ¢, = h/2. Note that this result is inde-
pendent of the distance of the person to the mirror. Therefore, the
minimum length of the mirror is half of the height of the person’s
eye level above the ground.

Focal length of a biconcave lens. A biconcave lens of refractive
index n has two biconcave bounding surfaces of radius R. Find the
focal length of the lens.

For a biconcave lens, we have Ry = —R and Ry = R. From Lens-
maker’s equation 1/f = (n — 1)(1/Ry — 1/Rs), we have

- (- 3) -2
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The focal length of the lens is then given by
R
f=- 2(n—1)
From the above result, we see that the biconcave lens possesses a
negave focal length and is thus a diverging lens.

(1.27)

Focal length of a planoconcave lens. A planoconcave lens of
refractive index n has a concave bounding surface of radius R and
a flat bounding surface. Find the focal length of the lens. Does
the orientation of the lens affect the value of the focal length? The
orientation of the lens indicates which bounding surface faces the
incident light.

If the concave surface faces the incident light, we have Ry = —R and
R = oo. From Lensmaker’s equation 1/f = (n — 1)(1/R; — 1/Ra),

we have
1 1 1 n—1
== ) == .
;= )<—R oo) R

The focal length of the lens is then given by
R

f=- n—1

If the flat surface faces the incident light, we have R; = oo and

Ry = R. From Lensmaker’s equation 1/f = (n — 1)(1/R1 — 1/Rs),

we have
1 1 1 n—1
— = —1 _— — = —
f (n )<oo R) R

from which we obtain the same focal length in Eq. (1.28). Therefore,
the orientation of the lens does not affect the value of the focal length.

(1.28)

Thin lens with a positive focal length. A thin lens of focal
length f = 0.40 m is used to image a real object that is a distance of
0.25 m from the lens.

(1) Find the location and magnification of the image.

(2) Draw an accurate ray diagram for the image formation.

(1) Since the focal length of the lens is positive, the lens is a con-
verging one. From the lens equation 1/d, + 1/d; = 1/f, we

have
1 1

T 1/f—1/d,  1/0.4—1/0.25

d; ~ —0.67 m. (1.29)
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The magnification is given by

d; 1 1
M = —— = — = —
do (1/f - 1/d0)do do/f -1
1
= x~2.67. 1.30
0.25/0.40 — 1 (1.30)

That the value of M is so evaluated in the above is to avoid the
rounding error. If the value of d; in Eq. (1.29) were used in M =
—d;/d,, we would have obtained M = —d;/d, ~ 0.67/0.25 =
2.68.
From the above-obtained values of d; and M, we see that the
image is virtual, upright, and magnified.

(2) The ray diagram for the image formation of the biconvex lens is
given in Fig. 1.11.

A

Yy

=~
DSx<
[N
1 ST~
: \\\ \\\\

Image , AN AN
N -~
f ~
1
: Object
R Lo e b N T _

e L

Fig. 1.11: Image formation of a biconvex lens.

1.16 Optical system with two thin lenses. An optical system
[Ref. Fig. 1.12] consists of a biconvex lens (called L) of focal
length f; = 0.10 m and a biconcave lens (called Ls) of focal length
f2 = —0.20 m. The distance between the two lenses is 0.10 m. Where
is the image of an object in front of L; and a distance of 0.15 m away
from it?

We first find the position of the image formed by L; and then find
the position of the image of this image formed by Lo. From the lens
equation 1/d, + 1/d; = 1/ f, for d, = 0.15 m we have

g~ Gofi _ 015x0.10
" d,—f1 0.15—-0.10

= 0.30 m.
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Ll Lf)

1.17

1.18

0.15m } 0.10m |

Fig. 1.12: Optical system consisting of a biconvex lens and a biconcave lens.

Thus, the image formed by L is real and inverted and is 0.30 m

behind L. Because the distance between L and Lo is 0.10 m, the

image formed by L7 is 0.20 m from Ls on the other side of the optical

system and acts as an object for Lo. Thus, d, = 0.20 m. From the
lens equation 1/d, +1/d; =1/ f, we have

J - d fa _ 0.20 x (—0.20)

Yd—fa 020 — (—0.20)

Thus, the image formed by the optical system is on the opposite side

of the optical system with respect to the object and is 0.10 m from
Lo.

= —0.10 m.

Focal length of a lens. An object located a distance of 0.50 m
to the right of a lens forms an image that is 0.20 m from the lens
on the other side. What are the focal length f of the lens and the
magnification M of the image?

From the statement of the problem, we have d, = 0.50 m and d; =
0.20 m. Let f be the focal length of the lens. From the lens equation
1/d, +1/d; =1/ f, we have

1 1 1 1 1

f_d0+di =050 020
from which we have f = 1/7 &~ 0.143 m. The magnification of the
image is given by

) '} (1.31)

Thus, the image is real, inverted, and diminished.

System of converging and diverging lenses. An object is placed
0.300 m to the left of a diverging lens of focal length f; = —0.100 m.
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1.19

1.20

A converging lens of focal length fo = 0.300 m is placed a distance
d to the right of the diverging lens. Find the value of d so that the
final image is at infinity.

We first find the image formed by the diverging lens on the left. From
the lens equation 1/d, + 1/d; = 1/ f1, we have

1 1 1 40
4 fi d, 0100 0300 3

Thus, d; = —0.075 m. For the image formed by the lens on the right

to be at infinity, the image formed by the lens on the left must be at

the focal point of the lens on the right. We thus have fo = d + |d;]

from which we obtain

d = fo —|d;| = 0.300 — 0.075 = 0.225 m. (1.32)

Two identical converging lens. Two identical lens of focal length
f = 0.12 m are placed 0.24 m apart with a common optical axis.
Consider the image of an object that is placed 0.08 m to the left of
the lens on the left. What is the position of the final image relative
to the lens on the right?

We first consider the image formed by the lens on the left. From the
lens equation 1/d, + 1/d; = 1/ f for the lens on the left, we have

1 1 1 1 1 25

4 f d, o012 008 6 ™
from which it follows that d; = —0.24 m. The negative value of d;
indicates that the image is to the left of the lens on the left. Thus,
the object distance to the lens on the right is given by

d, = d+|d;| =0.24+0.24 = 0.48 m.

Inserting the above value of d/, to the lens equation 1/d/+1/d, =1/ f
for the lens on the right yields

1 1 1 1 1

= . = =62 —1

¢ 7 @ o012 o4 oMW

from which we obtain d; = 0.16 m. Hence, the final image is a
distance of 0.16 m to the right of the lens on the right.

Biconvex lens and convex mirror. An optical system consists of
a convex lens L of focal length f;, = 0.02 m and a convex mirror M
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M

L
__Objecty = & A
F, Lo I L
EU

r—d—

Fig. 1.13: Optical system consisting of a biconvex lens and a convex mirror.
Points Fr, and Fr; are respectively the object and image focal points of the
lens. Point Fs is the focal point of the mirror. Note that Fis coincides with

Fr .

1.21

of radius Ry; = 0.12 m as shown in Fig. 1.13. The distance between
the lens and the mirror is d = 0.04 m. Find the location of the final
image of the object located 0.03 m in front of the lens L.

We first find the image of the object formed by the lens. We then
find the image of the lens-image formed by the mirror. From the lens
equation 1/dp .+ 1/dp; =1/ fr, we have

1 1 1 1 1 50 4

- — — = —m

dr:  fo di, 002 003 3

from which we obtain dy ; = 0.06 m. Because dr; > d, the image
formed by the lens is a virtual object to the mirror. The object
distance with respect to the mirror is then given by d, = —(0.06 —
0.04) = —0.02 m. From the mirror equation 1/d, + 1/d; = 1/f with
f = —Ran/2, we have

1 2 1 2 1 100
= —1m

7=

R d, 012 —0.02 3

from which it follows that d; = 0.03 m. That is, the final image is a
distance of 0.03 m to the left of the mirror M.

Optical system of two biconvex thin lenses. Consider an optical
system consisting of two identical biconvex thin lenses of focal length
f with a separation of 2f. For an object a distance d, ; in front of
the front lens, what is the distance d; 2 of the image from the back
lens?
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1.22

1.23

We first consider the image formed by the front lens. From the lens
equation 1/d, 1+ 1/d;1 = 1/f for the front lens, we have

1 1 1 dos—f

din  f doy  donf

We thus have
dorf
doq — f°
The front-lens-image acts as an object for the back lens. The object
distance for the back lens is

din =

f(don —2f)

d071 - f
From the lens equation 1/d, 2 + 1/d; 2 = 1/f for the back lens, we
have

doo=2f—di1 =

11 1 1 doy — f 1

diz f doo f f(do1—2f) B 2f —don

from which it follows that

din=2f —dy,. (1.33)

Parallel incident rays not parallel to the optical axis. Parallel
incident rays make an angle of § = 5° with the optical axis of a
diverging lens of focal length f = —0.30 m. Where is the image?

Because all the incident rays are parallel, the virtual image will be in
the focal plane. To find the location of the image, let us consider a
ray that passes through the center of the lens. Since this ray does not
change direction after passing through the lens, its intersection with
the focal plane determines the location of the virtual image. Thus,
the virtual image will be off the optical axis by the amount given by

§ = |f|tanf = 0.30 x tan5° ~ 0.026 m = 26 mm. (1.34)

Retro-reflecting sphere. A retro-reflecting sphere is a sphere
of glass that reflects light back directly. For a sphere to be retro-
reflecting, what must be its refractive index? As shown in Fig. 1.14,
the back surface of the sphere is coated so that light can be reflected
from the back surface. Take the refractive index of air to be unity.
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Fig. 1.14: Retro-reflecting sphere.

Fig. 1.15: Light ray that is parallel to the principal axis and refracts into the
medium of refractive index n through a spherical surface of radius R. The focal
point is denoted by F.

Let n and R be respectively the refractive index and radius of the
sphere. We first consider the refraction of an incoming light ray into
a medium of refractive index n through a spherical surface as shown
in Fig. 1.15 and find the focal length for the spherical surface. We
then apply the obtained-result to the retro-reflecting sphere.

We use the coordinate system shown in Fig. 1.15 with the coordinate
origin at the center of curvature of the spherical surface. In terms
of the coordinates of point P, (zp,yp), the angle of incidence 6, is

given by
01 = arctan <y—P) .
Tp
From the law of refraction, the angle of refraction 65 is given by

. (sinfy
@ = arcsin .
n

For 6; < 1 and 6, < 1, that is, for paraxial rays, we have
tan @y ~ sinfy ~ 0, ~ 22,
Tp
. 0 _ yp
tanfy ~ sinfy ~ Oy ~ — ~ L—.
n  nrp
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1.24

From the right triangle APQF', we have
PQ __ _nPQ
01 —0  (n—1)0;"
From the right triangle APCQ, we have
PQ = Rsinb, ~ RY;.

FQ = PQcot(f; — ) ~

Thus,

nRk
n—1

FQw~

The focal length F is given by F' = F'V. For paraxial rays, we can
approximate F'V with FQ. The focal length f is then given by
nR

frTo~
n—1

(1.35)

We now turn to the retro-reflecting sphere. For the sphere to reflect
light back directly, the coated back surface of the sphere must be
located at the focal point of the front spherical surface. That is,
the focal length of the front spherical surface must be equal to the
diameter of the sphere. We thus have

nRk

=2
n—1 R

from which it follows that
n=2. (1.36)

Note that the above result was derived under the paraxial approxi-
mation.

Three identical biconvex lenses. As shown in Fig. 1.16, three
identical biconvex lenses of focal length f are aligned with two neigh-
boring lenses separated by a distance f. Using the graphical method,
find the position and magnification of the resultant image of an ob-
ject located f/2 in front of the leftmost lens.

To construct the resultant image, we use the following two light rays:
Ray 1 is incident onto the leftmost lens in parallel to the optical axis
and ray 2 is directed toward the optic center of the leftmost lens.
Using the rules for the image formation of thin lens, we obtain the
image shown in Fig. 1.17.
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Fig. 1.16: Three aligned identical convex lenses of focal length f with a spacing
of f between two neighboring lenses.

Fig. 1.17: Image formation of an optical system with three aligned identical
convex lenses of focal length f with a spacing of f between two neighboring
lenses.

1.25

From Fig. 1.17, we see that the image is real and inverted. Because
the image is inverted, the height of the image is negative. From ray
1, we can infer that the absolute value of the height of the image is
the same as the height of the object. Thus, the image is of the same
size as the object.

From ray 2 and in consideration that the image is of the same size
as the object, we can infer that the right triangle with the object as
one side is congruent to the right triangle with the image as one side.
Thus, the image is located f/2 to the right of the rightmost lens.
In consideration that the image is inverted and is of the same size
as the object, we see that the magnification of the image is given by
M= —1.

Determination of the object size from its image sizes. As
shown in Fig. 1.18, we produced images of an object on a screen
using a thin converging lens. With the positions of the object and the
screen fixed, when we moved the lens in between the object and the
screen, we found that sharp images on the screen could be produced
with the lens being at two different positions. The heights of the
sharp images are respectively given by h; and hy. What is the height
of the object?
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(a) Converging
lens S
creen
Image
(b) Converging
lens
Screen
Object] F,
77777777777777777777777777 P o= . }Tmage

Fig. 1.18: Images of an object for the converging lens at two different positions.

Let L denote the distance between the object and the screen. Let f
be the focal length of the converging lens. If the object distance is
do, then the image distance is given by

di =L —d,.
From the lens equation 1/d, + 1/d; = 1/ f,we have
1 1 1
J— + —

d,  L—d, |
from which we obtain the following quadratic algebraic equation for
the object distance d,
d2 — Ld, + fL=0.

Solving for d, from the above equation, we obtain

L 4f
do==1|1%£4/1——= ). 1.
5 ( 7 ) (1.37)
The corresponding image distances are then given by
L 4f
di=L—-d,== 1|1 1——=]. 1.38
5 < F 7 ) (1.38)

From the expression M = h;/h, = —d;/d, for the magnification of

the image, we have
b 1+1-4f/L
T A
he  1- T 4fL

h i+ I-4f/L
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Multiplying together the above two equations yields
hihs

=1L

Therefore,

h = /hihs. (1.39)

Telephoto lens of a camera. As shown in Fig. 1.19, placing a
diverging lens between the normal camera lens and the sensor plane
transforms the camera lens into a telephoto lens. The focal lengths
of the camera lens (L) and the diverging lens (L2) are respectively
f1=50mm and fo = —100 mm.

Sensor plane

o
=

|
|
i
|
|
i
|
i
|
|
i
|
i
|
i
|
i
i
i
i

d 1

Fig. 1.19: Telephoto lens.

(1) What is the distance d between the diverging lens and the sensor
plane if the lens system is focused on an object 0.5 m in front
of the lens L7

(2) What is the magnification of an image formed by the lens sys-
tem?

(1) With respect to Ly, the object distance is d, 1 = 0.500 m. From

the lens equation 1/d, 1 + 1/d;1 =1/ f1 for Ly, we have
1 1 1 1 1

== ——=18m"!
din  fi  doi 0.050 0.500 m

from which we have d; 1 = 1/18 m. To avoid rounding errors,
we have kept the fractional value for d; ;. The image of L,
is the object to Ls. With respect to Lo, the object distance
is dp2 = 0.020 — d;; = —16/450 m. From the lens equation
1/d0’2 =+ 1/d12 = 1/f2 for LQ, we have

1 1 1 1 450 290

ds o dos 0100 16 16 ™
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from which we obtain d; 2 = 16/290 ~ 0.055m = 55 mm. Thus,
d = 55 mm in order for the image to be in the sensor plane.
(2) The magnification of the system is given by the product of the
magnifications of the two lens. We have
d; i 0,104
M= [ % _dig :d,ld,2
do,l do,2 do,ldo,2
16 x 450
=— ~ —0.172. 1.40
18 x 290 x 0.500 x 16 ( )
The negative value of M implies that the image is inverted with
respect to the object.

1.27 Simple telescope. We consider a simple telescope consisting of

three thin lens L, Lo, and L3 as shown in Fig. 1.20. L; functions
as the aperture and the entrance pupil of the telescope. Lj is the
eye lens. The focal lengths and diameters of Ly, Ly, and L3 are
respectively f; = 0.100 m, fo = f3 = 0.020 m, D; = 0.040 m, and
D2 = D3 =0.012 m.

Lightray I,

Light ray

} 0.1m }
Fig. 1.20: Simple telescope.
(1) Trace a light ray entering the telescope in parallel to the optical

axis through the telescope.
(2) Find the position and diameter of the exit pupil.

(1) Ray tracing through the system is given in Fig. 1.21 from which
we see that light rays entering the system in parallel to the
optical axis will be still parallel to the optical axis after passing
through the system.

(2) The exit pupil is the image of the entrance pupil L; through
Lo and Ls. With respect to Lo, L1 is located at a distance
of 0.100 m away so that the object distance is given by
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Lightray Ly

Light ray
Fig. 1.21: Ray tracing through the simple telescope.

do2 = 0.100 m. From the lens equation 1/dy o + 1/d;2 = 1/ f2
for Lo, we have
1 1 1 1 1
= — — = — = 40 -1
diz  f2 dy» 0020 0100

from which it follows that d; » = 0.025 m. The image formed

by Lo is the object to Ls. In consideration that the distance
between Lo and Lz is 0.020 m, we have

do,3 = 0.020 — 0.025 = —0.005 m.

From the lens equation 1/d, 3+ 1/d; 3 = 1/ f5 for L3, we have
1 1 1 1 1

= - = 4+ —— =250m !
45 f5 dys 0,020 " 0.005 o

from which we have d; 3 = 0.004 m. Thus, the exit pupil is
located 0.004 m behind Ls.
The diameter of the exit pupil can be found by using the sim-

ilarity between the right triangles formed by light rays, optical
axis, and lenses. The diameter of the entrance pupil is given by
the diameter D, of L;. Let D’ denote the diameter of the exit
pupil. From the similarity between the right triangles AAO; 0>
and ABO30,, we have

D, /2 _ ﬁ
D'/2 fs
Thus,
0.020
D = %Dl = 0100 x 0.040 = 0.008 m. (1.41)
1 .

1.28 Prescription for a farsighted eye. The eye of a farsighted person
has a near point at 1.25 m. What prescription in diopters will be



Problems and Solutions in University Physics Downloaded from www.worl dscientific.com
by 37.237.111.69 on 11/17/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

28 Problems in University Physics with Solutions—Optics, thermal & modern physics

1.29

required for contact lenses if the near point of the eye of that person
is to be moved to 0.25 m?

For contact lenses, the optical power of the corrective lenses is given
by 1/f = 1/dnear,normal — 1/dnear- In the current case, dpear = 1.25 m
and dnear,normal = 0.25 m. We thus have

1 1 1 1 1
o B = —— — —— = 3.2 diopters.  (1.42
f dnear,normal dpear 0.25 1.25 1opters ( )

*Focusing through a refracting interface. Parallel light rays
are incident from medium 1 of refractive index nq onto the interface
between medium 1 and medium 2 of refractive index no as shown in
Fig. 1.22. Assume that ny > ny.

r

ny Ty

f 1

Fig. 1.22: Focusing interface between two media.

(1) For the light rays to be focused at the point F' that is a distance
f from point O, what is the shape of the interface?

(2) Find the maximum radius of the light beam that can be focused
by the interface.

(1) Let us consider the light ray that is incident at point (z,7) on
the interface as shown in Fig. 1.23.
The angle of incidence is given by
dz
tanf; =—.
A dr
From the law of refraction, the angle of refraction is given by

. nq sin 61
sinfyg = ——.
n2
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f }

Fig. 1.23: Refraction of a light ray by the interface between two media.

For the light ray to be focused at F', we must have 03 = 6, — «
with

tan a= , sina=

r r f—=z
- —_—  coSO=—————,
= VI (F2) NG
Taking the sine of both sides of the relation 8, = 6; — «, we have
sinfy = sin(6; — «),

n1 sin 61 . .
————= =cosasinf; — sinacosb,
n2
sin a
tanfy = ——————|
n1/ng — Cos

d
Eo 4 . (1.43)
dr (n1/n2)\/r? + (f —2)* = (f = 2)
To simplify the above equation, we introduce two new variables
n and p that are related to z and r through

n=f—z p=vVrr+(f—2)>=
We then have

d__d

dz  dn’
dp _ _d /s s _L(dr
dn  dz = P "az ")

Plugging the expression for rdr/dz from Eq. (1.43) into the
above equation, we have

dp m

dn g’
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(2)

Integrating the above equation under the boundary condition
that p|,—f = f, we have

ny

p—f=—m-1).

UP)
Inserting the expressions of 1 and p in terms of  and z into the
above equation, we have

n
Vi (f—2)?2—f=——z

n2
Solving for z from the above equation, we obtain

naf (ng +nqp)r? ]

ng +ny

1+4/1—

a (n2 —n1)f?

The result with the plus sign in the above equation is not con-
sistent with the boundary condition z|.—o = 0. Thus, the shape
of the interface is given by

TLQf
ng +ny

- 1—/1- (1.44)

(n2 —n1)f?
The presence of the square root in Eq. (1.44) indicates that the
values of r can not be larger than a certain value 7,5 that can
be obtained by setting the quantity under the square root to
zero. We then have

(ng +nq1)r? ]

2
N2 + N1 Thax
ng —ny f2

Nno — Ny
Tmax =/ ———— /- 1.45
ng + Ny / ( )

1 =0

from which we have

1.30 *Spherical drop of water. Consider a light ray enters and leaves
a spherical drop of water of index n as shown in Fig. 1.24.

(1)
(2)

(3)

What is the angle of incidence 5 on the back surface?

What is the angle of deflection v when the ray exits the water
drop?

What is the angle of incidence « that yields the smallest deflec-
tion?

(1)

From Fig. 1.24, we see that the angle of incidence 3 on the back
surface is equal to the angle of refraction at point A (the entrance
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Fig. 1.24: Reflection and refractions of a light ray on a spherical drop of water.
The equal angles have been identified.

point of the light ray into the water drop). Applying the law of
refraction to the refraction at A, we have sinaw = nsin 8 from
which it follows that

3 = aresin (Slﬂ> . (1.46)
n
(2) From triangles AABD and ACBD, we have
y=m-2[—(a—B)] =7+2a—48

=7 + 2a — 4 arcsin (%) . (1.47)
n
(3) Differentiating v with respect to a and setting the result to zero,
we obtain
by gy cosa
do n2 — sin® o

from which we obtain

v = arccos (1.48)

1.31 **Deflection of a light ray passing through a prism. Consider
a light ray passing through an isosceles prism of refractive index n
and refracting angle «. For the refracting angle a of the prism and
other angles, see Fig. 1.25. The deflection angle of the light ray is
denoted by ~. The refractive index of air is taken to be unity.

(1) Express v in terms of «, 0, and 65.
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Fig. 1.25: Prism and light ray passing through it.

(2) Find a relation between v and « for a minimum value of ~.

(3) If the light ray passes through the prism symmetrically, show
that the relation derived in (2) is satisfied.

(4) Show that v ~ (n — 1)« if both « and 6; are small.

(1) With the angles of incidence and refraction at the front and back
surfaces of the prism shown, the prism and the light ray passing
through it are given again in Fig. 1.26. For the convenience of
showing the angles more clearly, we have used a large angle of
incidence in Fig. 1.26 which is exact in the sense that the path
of the light ray is constructed exactly in accordance with the
law of refraction.

Fig. 1.26: Prism and light ray passing through it with all the angles of incidence
and refraction shown.

From Fig. 1.26, we see that v can be expressed in terms of angles
01, 62, 01, and 0} as follows

7:91—924—9/2—0/1.
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From Fig. 1.26, we can infer the following relation between an-
gles 7 and 6
01+ 6 = a. (1.49)
We thus have
7:91—92—1—9/2—((1—92):91+9/2—04. (150)

To minimize ~y, we differentiate v with respect to #; and set the
result to zero. We have
0= D gy
dé dbq
To evaluate the right hand side of the above equation, we write
down the law of refraction for refractions at the front and back

(1.51)

surfaces of the prism and have
sinf; = nsin 6, (1.52)
nsinf] = sin ). (1.53)

Making use of Eqs. (1.53), (1.49), and (1.52) in this order, we
have

oy _ n0059/1 dgy _ cosfypdfy  costcosbs
dfy  cos®,df;

cosfh df; — cos B cosfy
Inserting the above result into Eq. (1.51) yields
cos 01 cos 0] = cos O cos 6.
Multiplying Eq. (1.52) with Eq. (1.53), we have
sin 0 sin 0] = sin 05 sin 65.
Adding up the above two equations yields
cos (0 — 05) — cos (61 — 07) = 0.
Making use of the identity cosa — cosf = —2sin[(a +
B)/2]sin[(a — B)/2] from elementary trigonometry, we have
9 _ A _p _n _ /
Sin 2 92 + 91 91 Sin 92 92 91 + 91 _
2 2
Inserting Eq. (1.49) into the second factor on the left hand side
of the above equation yields
. 92—9/2-1-91—9/1 . 91+9/2—Oé
sin 5 sin 5

0.

=0.
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(3)

Making use of Eq. (1.50), we obtain

0y — 6‘/2 + 61 — 9’1 ¥

i in— = 0.

sin 5 sin 5

Because y can not be zero or 27, we must have 0y —05,+60; — 0] =
0, that is,

0, — 0, = 0, — 0. (1.54)

To derive the desired relation between v and «, we again make
use of Egs. (1.52) and (1.53). Interchanging the two sides of
Eq. (1.53) and then adding the resultant equation to Eq. (1.52),
we obtain

sin @y + sin 05 = n (sin By +sin6]) .

Making use of the identity sin a+sin § = 2 sin[(a+£)/2] cos[(a—
B)/2], we have
b1+ 0, cosa1 —% :nsmaz—’—a/1 cosa2_91.

2 2 2 2
Due to Eq. (1.54), the second factor on the left hand side cancels
the second factor on the right hand side in the above equation,
which leads to

sin

. 01+ 0 . O+ 0]
sin ———= =nsin ———.
2
Making use of Egs. (1.49) and (1.50), we obtain
sin T2 @ :nsin% (1.55)

which is the desired relation.
If the light ray passes through the prism symmetrically, we have

0, =05, 65 =10,.
Because of Eq. (1.49), we have

The deflection angle is now given by
7:014—9/2—0(:291—04.

We then have
v+

. . . e
sin 251n91:nsm92:nsm§.
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Therefore, the relation in Eq. (1.55) is satisfied if the light ray
passes through the prism symmetrically.
(4) If both o and 6, are small, then 65, 6], and 6} are also small. In
this case, Eqgs. (1.52) and (1.53) become
01 ~ nba, nb =~ 0.
Making use of the above two equations and Eq. (1.49), 6] + 62 =
«, we have
v=01+ 0, —a=~nby+nb —«
n(f2+0)) —a=na—a=(n—1)a. (1.56)

**Thin biconcave lens with one surface silvered. A convex
spherical mirror is obtained by coating with silver one of the two
surfaces of a thin biconcave lens whose refractive index is n and
whose two surfaces have the same radius of curvature R. What is
the focal length of the resultant convex spherical mirror?

For clarity, we illustrate the geometry in Fig. 1.27 for a thick bicon-
cave lens of thickness t. However, our calculations will be performed
for a thin biconcave lens with t — 0. We follow an incident light ray
parallel to the optical axis and find the point where the backward
extension of the light ray intersects the optical axis when it emerges
from the lens. We will make use of the paraxial approximation from
the beginning of our calculations.
The light ray enters the lens at point P, is reflected at point @ on
the back surface, and emerges from the lens at point .S on the front
surface. The backward extension of the emerging ray intersects the
optical axis at point F' that is the focal point of the convex spherical
mirror. Because point F' is to the right of point O, the focal length
f is negative and is given by f = —OF. Because the focal length
is negative, the resultant mirror is a convex spherical mirror as we
have been referring to.
Assume that the incident ray is a distance of h above the optical axis
with h < R. The limit of h — 0 will be taken at the end of our cal-
culations. The coordinates of point P in the paraxial approximation
are given by
2
vp= VIR Ra 0
yp =h.
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Light ray

Fig. 1.27: Determination of the focal length of a biconvex lens with one surface
coated with silver.

The value of angle « in the paraxial approximation is given by
S Vo)

R — |zp] R R

The angle of incidence 6; at point P is equal to o, 1 = «. From the
law of refraction, we have

« = arctan

sin 91 - 01 - h

n n  nR
We now examine the reflection at point Q). First, we find the coordi-
nates of point Q. The path of the light ray from P to @ is described
by y = tan (01 — 02) (x — xp) +yp and the back surface of the lens is
described by (z — R)? +4? = R?. Solving for x and y from these two
equations with the application of the paraxial approximation yields
h2
SR
Yy ~ h.

0y ~ sinfy =

T ~

The angle § is then given by
YyaQ YyaQ
~ ta = N R
frtanf=p=r-~ %
The angle of incidence 63 at point @ is

2n — 1)h
93=ﬁ+91—92%7( ) .
nRik
We next examine the refraction at point S. Again, we first find

the coordinates of point S. The path of the light ray from @ to

h
=
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S is described by y = —tan (8 +0s3) (r —z¢) + yo and the front
surface of the lens is described by (z + R)? + y? = R?. Solving for x
and y from these two equations with the application of the paraxial
approximation yields

(n+1)h?
Ty R ————
s 2nR
ys ~ h.

From the above results, we obtain the following value for angle ~
_Ys ys P
R—|zs] R R
The angle of incidence at point S is given by
(2n —1)h n 2h (4n — 1)h

nR R nR
From the law of refraction, the angle of refraction 64 at point S is
given by

vy = arctan

O3+ 5+~

dn — 1)h
94zsin94:nsin(03+ﬁ+7)zn(93+ﬁ+7)%%.

The slope of the outgoing ray is then given by
2(2n—1)h
ko = —tan(0y — ) ~ — (01 —7) = _2@n—1)h R ) :
The equation for the outgoing ray reads
y = ko(r —x5) +ys-

The z-coordinate of the focal point F' can be obtained by setting
y = 0 in the above equation. We have

ys R (n+1)h? R
— = 4 Trs ~ — ~ .

ko 2(2n—1) 2nR 22n —1)
In the limit of h — 0, the above result for xr becomes exact. Hence,
the focal length of the resultant convex spherical mirror is given by

— R

rp =

**Thin biconvex lens with one surface silvered. A concave
spherical mirror is obtained by coating with silver one of the two
surfaces of a thin biconvex lens whose refractive index is n and whose
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two surfaces have the same radius of curvature R. What is the focal
length of the resultant concave spherical mirror?

To find the focal point and the focal length of the resultant concave
spherical mirror, we follow an incident light ray parallel to the optical
axis and find the point where the light ray intersects the optical axis
when it emerges from the lens. The relevant geometry is illustrated
in Fig. 1.28 for a thick biconconvex lens of thickness t. We will apply
the paraxial approximation from the beginning of our calculations.

Light ray
B
R R 0 _ z
&

Fig. 1.28: Determination of the focal length of a biconvex lens with one surface
coated with silver.

The light ray enters the lens at point P, is reflected at point @) on
the back surface, and emerges from the lens at point S on the front
surface. The emerging ray intersects the optical axis at point F' that
is the focal point of the concave spherical mirror. Because point F'
is to the left of point O, the focal length f is positive and is given by
f = FO. Because the focal length is positive, the resultant mirror is
a concave spherical mirror as we have been referring to.

Assume that the incident ray is a distance of h above the optical axis
with h < R. The limit of h — 0 and ¢t — 0 will be taken at the
end of our calculations. The coordinates of point P in the paraxial
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approximation are given by
t h? ot
= - VR2Z_M24+ R— L~ 2
o TRTSRoR Ty
yp = h.

Because the h-dependence of xp is of the second order in h, xp =~
—t/2 up to the first order in both ¢ and h.
The value of angle « in the paraxial approximation is given by

yp yp h

a:arctanR_(t/2_ |£UP|) ~~ R—h2/2R =~ R

The angle of incidence 8, at point P is equal to «, 81 = a. From the
law of refraction, we have

sin 91 - 01 - h

n nR’

We now examine the reflection at point (). First, we find the co-
ordinates of point ). The path of the light ray from P to @Q is
described by y = —tan (6; — 02) (z — 2p) + yp and the back surface
of the lens is described by (x + R —t/2)? + y*> = R?. Solving for =
and y from these two equations with the application of the paraxial
approximation yields

0y ~ sinfy =

~

t R
TQR - — 75
°7 2 2R
Yy ~ h.
Because the h-dependence of x is of the second order in h, zg ~ t/2

up to the first order in both ¢ and h.
The angle § is then given by

YQ Yo _ I
~t = = .
frtanf = i 2~ R TR
The angle of incidence 03 at point @ is
(2n —1)h

03 = 01 — 0y =
3 =040 — 6 R

We next examine the refraction at point S. Again, we first find the
coordinates of point S. The path of the light ray from @ to S is
described by y = tan (8 + 03) (z — xg) + Yo and the front surface of
the lens is described by (z — R + ¢/2)* + y*> = R? Solving for =
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1.34

and y from these two equations with the application of the paraxial
approximation yields
ot N (n+ 1)h?
ST T Tonr

ys ~ h.

Because the h-dependence of xg is of the second order in h, x5 =~
—t/2 up to the first order in both ¢ and h. From the above results,
we obtain the following value for angle ~

Ys Ys h
R—(t/2—|zs]) R R
The angle of incidence at point S is given by

(2n—1)h 2h (4n—1)h
0 N — =
st Aty R TR nR
From the law of refraction, the angle of refraction 64 at point S is

given by

v = arctan

dn — 1)h
0y =sinfy =nsin(@s ++~) =n@s +5+v) = %
The slope of the outgoing ray is then given by
2(2n—1)h

ko =tan(0y —v) = 0y — v =~ 7

The equation for the outgoing ray reads

Yy = ko(x - xS) +ys.
The z-coordinate of the focal point F' can be obtained by setting
y = 0 in the above equation. We have

Ys R t  (n+1)h? R
= —— ~N —— - -
b TS Toma—1) T2 T TR 2(2n — 1)’
where we have taken the limit of ¢ — 0 and h — 0. Therefore, the
focal length of the resultant convex spherical mirror is given by

R
2(2n —1)

TF

f=FO=—zp= (1.58)

**Ray-tracing calculation for a planoconvex lens. The ge-
ometrical spot size produced by a collimated beam incident on a
planoconvex lens can be estimated through an exact ray-tracing cal-
culation. Assume that the refractive index, radius of curvature, di-
ameter, and center thickness of the lens are respectively n = 1.5,
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Fig. 1.29: Planoconvex lens and path of a light ray through the lens. For clarity,
the thickness of the lens has been exaggerated.

R =0.050 m, D = 0.060 m, and ¢ = 0.015 m. The refractive index
of air is taken to be unity. Consider the incoming ray parallel to the
optical axis and incident at the edge of the lens as shown in Fig. 1.29.

(1)
(2)
(3)
(4)

Find the coordinates of the entrance point into the lens and the
angles of incidence and refraction at the front surface.

Find the angles of incidence and refraction at the back surface
and the coordinates of the exit point from the lens.

Find the effective focal length f, the front focal length sp, and
the back focal length sp-.

Find the height h = F'I of the ray in the paraxial focal plane.
The height h can be used as an estimate of the geometrical spot
S1ze.

1)

(2)

We use the coordinate system given in Fig. 1.29. The y-
coordinate of the entrance point P is obviously yp = D/2 =
0.030 m with D the given diameter of the lens, D = 0.060 m.
The x-coordinate of the entrance point P is then given by

zp=—/R?—y%=—y/R>*—D?/4=—-0.04 m. (1.59)

The angle of incident at P is given by
0, = arctan (yp) ~ 36.870°. (1.60)
[zp|
From the law of refraction, the angle of refraction at P is given
by

. [sin6,
@ = arcsin
n

) ~ 23.578°. (1.61)

From the geometry in Fig. 1.29, we see that the angle of inci-
dence at P’ is given by

0, = 6; — 6 ~ 13.292°. (1.62)
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(3)

(4)

From the law of refraction, the angle of refraction at P’ is given
by
0, = arcsin (nsin6]) ~ 20.174°. (1.63)
The thickness of the lens at P is
tp=R—|xp| =R+ xp =0.010m.

Thus, the coordinates of P’ are given by

rp =xp +tp = —0.030 m, (1.64a)

ypr = yp — tptan(fy — 02) ~ 0.028 m. (1.64b)

The effective focal length can be obtained from Lensmaker’s
equation. For this planoconvexlens, Ry = R = 0.05 m, Ry = o0,
t =0.015 m, and n = 1.5. From Lensmaker’s equation, we have

1 11 (n—l)t}

R -1 - _
f (n )|:R1 RQ + anRQ

1
=(15-1) x| —— — —10m™"
(1.5 )X[O.O5 0—1—0} 0m

from which we obtain
f=01m. (1.65)

The front focal length is given by
(n—1)t

SF:f[1+ nive

] =0.1x[1+0]=0.1m. (1.66)

Thus, the front focal length is equal to the effective focal length.
The back focal length is given by

(n—1)t
;= 1—
S f[ an
(1.5—-1) x 0.015
=0.1 1-— =0. . 1.
0 x[ 008 0.09 m (1.67)

To find the value of h = F'I, we first find the y-coordinate of
point I. From Fig. 1.29, we have

yr = ypr — spr tan 6y ~ 0.028 — 0.09 x tan 20.174° ~ —0.005 m.
Thus,
h = F'I = —y; ~0.005m. (1.68)
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In order to see if large rounding errors have been introduced into
the above result, we insert all the previously-obtained analytical
results into the expression of y; less the expression of sp/ since
the numerical value from its expression gives the position of the
desired paraxial focal plane. We have
h = sp tan 0y — yp
= sp tan {arcsin [nsin(f; — 63) |} — yp + tp tan(6; — 63)

nsSgr sin(6‘1 — 92)

\/1 — TL2 sin2(91 — 92)
nsp sinfarcsin(D/2R) — arcsin(D/2nR)]

—yp + +tptan(fr — 62)

=-—yp+
\/1 — n2sin*[arcsin(D/2R) — arcsin(D/2nR)]
D D
+ tptan (arcsin R~ arcsin 2nR) . (1.69)

In the above expression of h, the previously-given values of quan-
tities yp and tp are exact. Evaluating h from the above expres-
sion, we obtain h ~ 0.00543 m which is in agreement with the
previously-obtained value.



