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Chapter 1

What is Statistical Mechanics?

1.1 Key Ideas in the module

We begin with the introduction of some important ideas which are fundamental in our

understanding of statistical mechanics. The list of important terms are as follows :

1. Microstate

2. Macrostate

3. Partition Function

4. Derivation of Thermodynamic laws by Statistical Mechanics

5. The idea of interaction

(a) particle (system) - external environment

(b) particle (within a system of many particles)

6. Entropy : Disorder Number

7. Equipartition Theorem : the energies are distributed equally in di�erent degrees of

freedom.

8. Temperature

9. Distributions : Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein

In the 3rd year course, we shall restrict to equilibrium distributions, and static macro-

scopic variables. We will deal with single particle states and no ensembles, weakly inter-

acting particles and the behaviour for distinguishable (degeneracies) and indistinguishable

particles.
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CHAPTER 1. WHAT IS STATISTICAL MECHANICS? 4

1.2 Why do we study Statistical Mechanics?

We apply statistical mechanics to solve for real systems (a system for many particles).

We can easily solve the Schrodinger's equation for 1 particle/atom/molecule. For many

particles, the solution will take the form :

 total = linear combination of  a(1) b(2) c(3):::

where  a means a particle in state a with an energy Ea.

For example, we consider particles con�ned in a cubic box of length L. From quantum

mechanics, the possible energies for each particle is :

E =
~
2

2m

�2

L2
(n2x + n2y + n2z)

For example in an ideal gas, We assume that the molecules are non-interacting, i.e.

they do not a�ect each other's energy levels. Each particle contains a certain energy. At T

> 0, the system possesses a total energy,E. So, how is E distributed among the particles?

Another question would be, how the particles are distributed over the energy levels. We

apply statistical mechanics to provide the answer and thermodynamics demands that the

entropy be maximum at equilibrium.

Thermodynamics is concerned about heat and the direction of heat 
ow, whereas

statistical mechanics gives a microscopic perspective of heat in terms of the structure

of matter and provides a way of evaluating the thermal properties of matter, for e.g., heat

capacity.

1.3 De�nitions

1.3.1 Microstate

A Microstate is de�ned as a state of the system where all the parameters of the con-

stituents (particles) are speci�ed

Many microstates exist for each state of the system speci�ed in macroscopic variables

(E, V, N, ...) and there are many parameters for each state. We have 2 perspectives to

approach in looking at a microstate :

1. Classical Mechanics

The position (x,y,z) and momentum (Px, Py, Pz) will give 6N degrees of freedom

and this is put in a phase space representation.

2. Quantum Mechanics

The energy levels and the state of particles in terms of quantum numbers are used

to specify the parameters of a microstate.
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1.3.2 Macrostate

A Macrostate is de�ned as a state of the system where the distribution of particles over

the energy levels is speci�ed..

The macrostate includes what are the di�erent energy levels and the number of parti-

cles having particular energies. It contains many microstates.

In the equilibrium thermodynamic state, we only need to specify 3 macroscopic vari-

ables (P,V,T) or (P,V,N) or (E,V,N), where P : pressure, V : Volume, T : Temperature,

N : Number of particles and E : Energy. The equation of state for the system relates the

3 variables to a fourth, for e.g. for an ideal gas.

PV = NkT

We also have examples of other systems like magnetic systems (where we include M, the

magnetization). However, the equilibrium macrostate is unknown from thermodynamics.

In statistical mechanics, the equilibrium tends towards a macrostate which is the most

stable. The stability of the macrostate depends on the perspective of microstates. We

adopt the a priori assumption which states the macrostate that is the most stable con-

tains the overwhelming majority of microstates. This also gives the probabilistic approach

in physics.



Chapter 2

Distribution Law

2.1 Distribution Law & Ensemble Approaches

The distribution law is dependent on how we de�ne the system. There are three ap-

proaches in de�ning the system and we adopt the three ensemble approaches.

1. Microcanonical Ensemble : Isolated system with �xed energy, E and number of

particles, N.

2. Canonical Ensemble : The system is in a heat bath,at constant temperature with

�xed N.

3. Grand Canonical Ensemble : Nothing is �xed.

The disorder number, 
 is de�ned as the number of microstates available to a

macrostate, and is very large for the equilibrium macrostate. The disorder number is

related to entropy, which is maximum at equilibrium.

To enumerate 
, we need to decide whether the particles are distinguishable or indis-

tinguishable. If they are indistinguishable, every microstate is a macrostate.

Let us now consider independent particles, with energy levels �xed and the particles

don't in
uence each other's occupation. The energy levels are �xed by each particle's in-

teraction with its surroundings but not particle-particle interactions. Mutual interaction

exist only for energy exchange (during collisions).

Each level j has energy "j, degeneracy gj, and occupation nj.

Distinguishability : small and identical particles cannot be distinguished during col-

lisions, i.e. non-localised. However, localised particles are distinguishable because they

are �xed in space, the sites being distinguishable e.g. in a paramagnetic solid.

For an isolated system, the volume V, energy E and total number of particles, N are

�xed.

6



CHAPTER 2. DISTRIBUTION LAW 7

N =
X
j

nj

Total E =
X
j

nj"j

The A Priori assumption states that all microstates of a given E are equally probable

thus the equilibrium macrostate must have overwhelming 
.

Ω

Equilibrium
state

Macrostates

Ω

Equilibrium
state

Macrostates

The disorder number 
 is proportional to thermodynamic probability, i.e. how probable

for a particular macrostate to be the one corresponding to equilibrium.

2.2 Computation of Most Probable Macrostate Dis-

tribution, nj

To �nd the nj at equilibrium, i.e. we must �nd the most probable macrostate distribution.

Considering the case for distinguishable particles :

1. Enumerate 
. We distribute N particles over the energy levels: For example,

For the �rst level,

The number of ways to assign n1 particles =
N !

n1!(N � n1)!
(2.1)

For the second level,

The number of ways to assign n2 particles =
N � n1!

n2!(N � n1 � n2)!
(2.2)
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Number of ways =
N !

n1!(N � n1!)
� N � n1!

n2!(N � n1 � n2)!
� ::::::

=
N !

n1!n2!::::nj !:::::

=
N !Q
j nj!

(2.3)

Level j has degeneracy gj so any of the nj particles can enter into any of the gj levels.

Number of ways = g
nj
j (2.4)

For all levels,

Number of ways =
Y
j

g
nj
j (2.5)

Total 
 = N !
Y
j

g
nj
j

nj!
(2.6)

2. Maximise 
 by keeping �xed E, N. These constraints are introduced through La-

grange multipliers.

For a �xed V, it means that the energy levels,"j are unchanged.

Maximise 
 subject to

X
nj = N

and

X
nj"j = E

At maximum,

d
 = 0 (2.7)

) d(ln
) =
1



d


= 0
(2.8)

Hence we can choose to maximise ln
 instead of 


ln
 = lnN ! +
X
j

nj ln gj �
X
j

lnnj! (2.9)

By Stirling's approximation for large N :

lnN ! = N lnN �N (2.10)
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Proof :

lnN ! =

NX
1

lnn

=

Z N

1

lnndn

= [n lnn� n]N1

= N lnN �N + 1

(2.11)

Or

NX
1

lnn4 n =

Z 1

1
N

(N ln
n

N
+N lnN)d(

n

N
)

= N [x lnx� x]11
N

+N lnN(1� 1

N
)

= �N + lnN + 1 +N lnN � lnN

= N lnN �N + 1

(2.12)

where 4n = d( n
N
) = dx.

Now we come back to ln


ln
 � N lnN �N +
X
j

(nj ln gj � nj lnnj + nj)

= N lnN +
X
j

(nj ln gj � njlnnj)

= N lnN +
X
j

nj ln(
gj

nj
)

(2.13)

by assuming large nj also, which is not always true.

d(ln
) =
X
j

(ln
gj

nj
dnj � dnj) = 0 (2.14)

It is subjected to the constraints :

X
j

dnj = 0 (for �xed N)

X
j

"jdnj = 0 (for �xed E)

Note "j does not vary. Therefore

X
j

ln(
gj

nj
)dnj = 0 (2.15)
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Now we introduce the constraints :

�
X
j

dnj = 0

��
X
j

"jdnj = 0

so we get X
j

(ln(
gj

nj
) + �� �"j)dnj = 0 (2.16)

We choose � and � such that

ln(
gj

nj
) + �� �"j = 0 (2.17)

The equilibrium macrostate becomes :

nj = gje
�e��"j

=
NgjP
j gje

��"j
e��"j

=
Ngj

Z
e��"j (Maxwell-Boltzmann Distribution)

(2.18)

where z is the partition function

We will prove later that � is equal to 1
kT

where k is the Boltzmann constant (k =

1:38� 10�23JK�1mol�1 ) and T is the temperature.

For "j > "i, we get nj < ni for gj = gi and T > 0

For T = 0, nj = 0, except for n1, i.e. all the particles are at ground state. For T > 0,

the upper levels get piled by particles provided

4" � kT (2.19)

Otherwise, the population of upper levels remain small.

In lasers, population inversion leads to negative temperature,

n2

n1
=
g2e

�
"2
kT

g1e
�

"1
kT

=
e�

"2
kT

e�
"1
kT

> 1

(2.20)

for g1 = g2,

) e�
"2
kT > e�

"1
kT

� "2

kT
> � "1

kT

� "2

T
> �"1

T

(2.21)

because k > 0.

Since "2 > "1, then T < 0
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2.3 Problems in Derivation of Maxwell-Boltzmann

Distribution

There are 2 inherent problems present in the derivation of Maxwell-Boltzmann distribu-

tion :

1. nj is not always large.

2. The other macrostates of the same �xed energy E. What are their 
s? Are they

small enough to be neglected?

The equilibrium distribution ~nj should be weighted against 
 of all possible macrostates

i, so

~nj =

P
j nj
i(nj)P
j

i(nj)

(2.22)

The most probable �nj (Maxwell-Boltzmann Distribution)

�nj =
Ngje

�"j

kTP
gje

�"j

kT

(2.23)

2.3.1 nj not being always large

If the total number of levels
P

j 1 is small and T is large enough, then every level j has

many particles so that for large nj. Stirling's approximation can be used.

If many levels exist, the lower levels will have large nj but higher levels will have small

nj. Many of the higher levels will give lnnj! � 0. (Note that 0! = 1! = 1).

However, the higher levels contribute very negligibly to
P

lnnj! so that we can ap-

proximate again by
P
(nj lnnj � nj) because many of the lower levels have large nj.

2.3.2 What about the other macrostates?

How does the 
 change when we consider other macrostates?

Consider the 
 changes from the most probable macrostate �nj to another distribution

nj.

nj = �nj + �nj (2.24)

Since

ln
(nj) = N lnN �N �
X
j

(nj lnnj � nj)

= N lnN �
X
j

nj lnnj
(2.25)
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Expand about �nj,

ln
(nj) = N lnN �
X
j

( �nj + �nj) ln( �nj + �nj)

= N lnN �
X
j

( �nj + �nj)(ln �nj + ln(1 +
�nj

nj
)

= N lnN �
X
j

( �nj + �nj)(ln �nj +
�nj

�nj
� 1

2
(
(�nj)

2

nj
) + ::::)

= N lnN �
X
j

�nj ln �nj + �nj + �nj ln �nj +
1

2
(
(�nj)

2

nj
) + :::

= ln
( �nj)�
X
j

�nj �
X
j

�nj lnnj �
1

2

X
j

(�nj)
2

nj
+ ::::

(2.26)

where

�nj =
N

Z
e
�"j
kT

neglecting gj for the purpose of simplifying the discusion.

Now as before,

X
j

�nj = 0

and
X
j

�nj"j = 0

Thus,

ln
(nj) = ln
( �nj)�
X
j

�nj(ln
N

Z
� "j

kT
)� 1

2

X
j

(�nj)
2

�nj
+ :::

= ln
( �nj)� ln
N

Z

X
j

�nj +
1

kT

X
j

"j�nj �
1

2

X
j

(�nj)
2

�nj
+ :::

= ln
( �nj)�
1

2

X
j

(�nj)
2

�nj
+ ::::::

(2.27)

It follows that


(nj) = 
( �nj)e
1
2

P (�nj)
2

�nj (2.28)


(nj) will be small, if �nj �
p
�nj.

Since �nj are large, the 
uctuations allowed are very small, by comparison, e.g. if

nj � 1020, nj . 1010 for 
(nj) to be large. Thus �nj � nj, so the 
uctuation is minor..

Ultimately, in deriving properties of the system, minor 
uctuations will not matter very

much.
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(i)

(ii)(ii)

Ω

Macrostates

where (i) represents �nj � nj and (ii) �nj large.

Alternatively, we can also argue the problem out by the choice of a fractional deviation

� =
j(�nj)

2j

�nj
, and we assume � is the same for all j. Then,

X
j

(�nj)
2

�nj
=
X
j

�2 �nj

= �2N

(2.29)

Hence


(nj) = 
( �nj)e
��2N (2.30)

which is small unless �2 . 1
N
, i.e,

j�njj .
�njp
N
< 1 (2.31)

so �nj needs to be small in order for 
(nj) to be signi�cantly large. In either case, we see

that 
(nj) will be small when the 
uctuation �nj is large

Now we come back to the total number of macrostates :

The total number of macrostates consistent with constraints :

X

 � 
( �nj)

Z
e
��n21
�n1 d�n1

Z
e
��n22
�n2 d�n2:::::::

= 
( �nj)
Y
j

( �nj)
1
2

(2.32)
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Stopping the product when �nj = 1

If total number of energy levels, G is very much less than N, then nj � N
G
and j = 1,2,

....., G.

X

 � 
( �nj)(

N

G
)
G
2 (2.33)

ln
X


 � ln
( �nj) +
G

2
lnN � G

2
lnG (2.34)

Now

ln
( �nj) � N lnN � lnN � lnG (2.35)

so

ln
X


 � ln
( �nj) (2.36)

so the most probable microstate has overwhelming 
.

2.3.3 What happens when we have many energy levels?

If nj � 1 for most levels, then we have many energy levels G � N . This means that all

macrostates look roughly the same.

The total number of microstates are not mainly due to the maximum term 
( �nj), i.e.P

 6= 
( ~nj). Hence Stirling's approximation is invalid in this case.

We resort to the following trick : Energy levels are closely spaced in groups because

G is large. They are grouped into bunches of gi with mi occupation. gi and mi can be

made large in this case.

The energy levels
are so closely spaced 
such that they are
grouped into bundles
of g   levelsi

i = 1

i = 2

first
bundle
1 of g1

2nd bundle
of g2
bundles

bundles

Using the previous derivation by counting 
( �mi energy states),

�mi =
Ngie

�"i
kTP

i gie
�"j
kT

=
Ngie

�"i
kTP

e
�"j

kT

(2.37)
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We take the time average value of nj over a large number of di�erent macrostates.

�mi =
�mi

gi

=
Ne

�"j

kTP
j e

�"j

kT

(2.38)


( �mi) = N !
Y
i

gmi

i

mi!
(2.39)

ln
( �nj) = ln
X


 (2.40)

By grouping closely spaced levels, the time-averaged variations are small and the

Maxwell-Boltzmann distribution describes �nj very well. Otherwise with nj � 1, the

variation at each j level appears large. The treatment tries to obtain the average �ni over

many di�erent but similar macrostates.

After a series of attack on our fundamental assumptions, we come to establish the ba-

sis of statistical mechanics : All macrostates of signi�cant probability (i.e. large


) have roughly the same properties and distribution close to the Maxwell-

Boltzmann distribution ignoring minor changes.

2.4 Time Evolution of system of microstates

How many microstates does the system explore within the time for the experiment?

For example, we consider paramagnetic system (where the atomic spins interact with

the external magnetic �eld - Zeeman E�ect). The particles inside this system (= 1023

particles) are assumed to be non-interacting, and each electron have a spin of �1
2
. We

also �x E and T for a �xed macrostate i.e. nj. Note in Quantum Mechanics, the energy

levels are discretized. X
k

�k:Bk � E � f(T ) k - each atom

The change in microstates will mean that the spin energy of the electron is exchanged

between neighbouring atoms so the atoms interchange energy levels. The typical time for

spin 
ip is 10�12s. So for 1023 electrons :

The Transition Speed = 1012 � 1023 = 1035s�1

Now, the number of microstates :


 � eN lnN > e10
35

o 1035

So it takes forever to go through all the microstates. Hence, for every experiment, one

can only explore a small proportion of microstates. So we need a statistical assumption

that what we observe corresponds to the real average over all microstates.
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2.5 Alternative Derivation for Maxwell-Boltzmann

Distribution

We present an alternative method to derive Maxwell-Boltzmann distribution from the

perspective of equilibrium.

Suppose we change from 1 macrostate to another macrostate, keeping E, V and N

�xed. We need a transition from i to k to be accompanied by another transition from j

to l.

k

E

l

Both the transitions from j to l or i to k requires the same amount of energy.

j

E

i

Therefore, the rate

Rij!kl = NiNjTij!kl (2.41)

where Tij!kl is the transition probability.

The total rate out from level i :

Ri out = Ni

X
j;k;l

NjTij!kl (2.42)

The total rate in to level i :

Ri in =
X
j;k;l

NkNlTkl!ij (2.43)

At equilibrium,

Ri out = Ri in (2.44)

Therefore it follows that :

Ni

X
j;k;l

NjTij!kl =
X
j;k;l

NkNlTkl!ij (2.45)

Now we invoke the time-reversal invariance, which is true for almost all transitions,

Tkl!ij = Tij!kl (2.46)
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Thus for every combination i, j, k and l, we require

NiNj = NkNl (Principle of Detailed Balancing) (2.47)

or

lnNi + lnNj = lnNk + lnNl (2.48)

and

"i + "j = "k + "l (2.49)

is required for energy conservation.

Since Ni � N("i), both equations will lead to

lnNi = ��"i + � (2.50)

Ni = e�e��"i (2.51)

which is the Maxwell-Boltzmann Distribution.

2.6 Examples of Counting in Statistical Mechanics

Problem 1 :

Given 6 distinguishable particles, 2 energy levels (one with a degeneracy of 2 and the

other degeneracy of 5). We want to calculate the number of macrostates and microstates

in this system.

First of all, we present a diagramatic scheme of the problem :

g2 = 5

g1 = 2 6 particles

We also note importantly that there are no equilibrium macrostate in this problem be-

cause all the macrostates have di�erent total energies.

There are 7 macrostates namely : (6,0), (5,1), (4,2), (3,3), (2,4), (1,5) and (0,6).

Now we come to calculate the microstates :

For (6,0) macrostate,


 = 26 ways
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For (5,1) macrostate,


 =
N !

n1!n2!
gn11 g

n2
2

=
6!

5!1!
� 25 � 5 ways

Subsequently, we can calculate for the remaining macrostates, using the example above.

Problem 2 :

Given 5 energy levels, each separated by �E. We consider the particles to be weakly

interacting, i.e. they exchange energy but do not a�ect each other's energy levels. Let us

look at the �rst 3 levels : (i) a particle moves from the 3rd level down to the 2nd level

and (ii) a particle moves from 1st level to the 2nd level. In this case, the change in energy

is balanced by exchange of particles for the 2 processes. Hence we can talk about a �xed

macrostate. Now we try to calculate 


Now we consider the schematic picture of this problem :

E

E

E

E

Macrostate (5,0,1,0,0), 
1 =
6 C5 �1 C0 �1 C1 �0 C0 �0 C0

= 6 ways

Macrostate (4,2,0,0,0), 
2 =
6 C4 �2 C2 �0 C0 �0 C0 �0 C0

= 15 ways

At equilibrium, we apply the weighted average for microstates, because the number of

microstates in either macrostate is not overwhelming enough.

~nj =

P
nj
i(nj)P


i

(2.52)

Therefore,

~n1 =
5� 6 + 4� 15

6 + 15

=
90

21
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~n2 =
0� 6 + 2� 15

6 + 15

=
30

21

~n3 =
1� 6 + 0� 15

6 + 15

=
6

21

~n4 = 0

~n5 = 0

Note :

X
j

~nj = 6

which is the same as
P
nj for any macrostate.



Chapter 3

Indistinguishable Particles

3.1 Introduction

Why are particles indistinguishable?

This is a quantum mechanical e�ect. The exchange of quantum particles cannot be

detected. The  's of the individual particles combine to form a total  , and they are

non-localised.

We can write a many particle wavefunction 	 as a linear combination of  a(1) b(2)::::::

plus all the possible permutations. For example, for three particle permutations, we get

six possibilities :

 a(2) b(1) c(3):::::

 a(2) b(3) c(1):::::

 a(1) b(3) c(2):::::

etc.

All particles are identical so all permutations are solutions to Schrodinger's equations,

and so are all linear combination of the permutations.

There are two physically meaningful solutions.

1. Symmetric  :

 s =
X
p

P [ (1; 2; ::::; N)] (3.1)

E.g. for 3 particles, we get

 s =  a(1) b(2) c(3) +  a(2) b(1) c(3) +  a(3) b(2) c(1)

+  a(1) b(3) c(2) +  a(2) b(3) c(1) +  a(3) b(1) c(2)

2. Antisymmetric  

 a =
X
p

(�1)pP [ (1; 2; :::::; N)] (3.2)

20
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where P is the permutation operator; (�1)P means �(�1) every time we exchange

two particle states.

E.g., for 3 particles, we get

 s =  a(1) b(2) c(3)�  a(2) b(1) c(3)�  a(3) b(2) c(1)

�  a(1) b(3) c(2) +  a(2) b(3) c(1) +  a(3) b(1) c(2)

If we exchange 1 and 2, then  a(2; 1; 3) = � a(1; 2; 3)

There are two kinds of quantum particles in nature:

1. Bosons : Symmetric wavefunctions with integral spins.

2. Fermions : Anti-symmetric wavefunctions with half-integral spins.

Note when 2 fermions are in the same state, total  is zero. For example,  a =  b, mean-

ing all permutations cancel in pairs, and hence we obtain Pauli's Exclusion Principle.

3.2 Bose-Einstein Distribution for Bosons

There is no limit to the occupation number at each level of quantum state. In fact, the

more the better. Note that 
 = 1 for all macrostates because of the indistinguishability

of particles. (Macrostates � Microstates)

Unless g >> 1 for some levels, for example, by the clumping of levels together to make gi
large. We can then count microstates (
 >> 1) because the states in i are distinguishable.

To put mi particles in gi states, imagine arranging mi particles into gi states, by ar-

ranging mi identical particles and gi�1 identical barriers on a straight line.

etc.

The number of ways =
(mi + gi � 1)!

mi!(gi � 1)!
(3.3)

Therefore,


 =
(mi + gi � 1)!

mi!(gi � 1)!
(3.4)

To maximise subject to the constraints :

X
i

mi = N

X
i

mi"i = E
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Therefore,

ln
 =
X
i

[ln(mi + gi � 1)!� lnmi!� ln(gi � 1)!]

�
X
i

[(mi + gi � 1) ln(mi + gi � 1)� (mi + gi � 1)�mi lnmi +mi � (gi � 1) ln(gi � 1)� (gi � 1)

�
X
i

[(mi + gi) ln(mi + gi)�mi lnmi � gi ln gi]

(3.5)

for gi; mi � 1

d(ln
) =
X
i

dmi ln(mi + gi) + dmi � dmi lnmi � dmi = 0 (3.6)

X
i

(ln
mi + gi

mi

)dmi = 0 (3.7)

Add in :

�
X
i

dmi = 0

��
X
i

"idmi = 0

So

X
i

(ln(
mi + gi

mi

) + �� �"i)dmi = 0 (3.8)

Then,

mi + gi

mi

= e��e�"i (3.9)

Therefore,

mi =
gi

e��e�"i � 1
(3.10)

where � = 1
kT

(to be proved later).

Averaging over the gi levels in each clump,

nj =
1

e��e�"j � 1
(3.11)

which is the Bose-Einstein Distribution.

We will �nd later that � = �

kT
where � is the chemical potential. Two systems at ther-

modynamic equilibrium have the same temperature T. The systems at chemical (particle

number) equilibrium have the same �.
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3.3 Fermi-Dirac Distribution for Fermions

In this case, we allow 0 or 1 particle to each quantum state.

Now we clump the energy levels to produce gi states and mi (<< gi).

etc...

Either there is a particle or no particle in 
each quantum state.

Number of ways to �ll mi boxes out of gi =
gi

mi!(gi �mi)!
(3.12)

Therefore


 =
Y
i

gi

mi!(gi �mi)!
(3.13)

To maximise subject to the constraints :X
i

mi = N

X
i

mi"i = E

Therefore,

ln
 �
X
i

gi ln gi �mi lnmi � (gi �mi) ln(gi �mi) (3.14)

where gi >> mi >> 1

d ln
 =
X
i

�dmilnmi � dmi + dmi ln(gi �mi) + dmi

=
X
i

ln(
gi �mi

mi

)dmi

= 0

(3.15)

Now we add in :

�
X
i

dmi = 0

��
X
i

"idmi = 0

So X
i

(ln(
gi �mi

mi

) + �� �"i)dmi = 0 (3.16)
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Then,

gi �mi

mi

= e��e�"i (3.17)

Therefore,

mi =
gi

e��e�"i + 1
(3.18)

Averaging over the gi levels in each clump,

nj =
1

e��e�"j + 1
(3.19)

which is the Fermi-Dirac Distribution.

Note :

1) The positive sign in Fermi-Dirac distribution implies that �nj � 1 which is Pauli

Exclusion principle (which states that no 2 fermions can share the same quantum state).

2) If
P
nj = N is not a constraint, � is zero and this is true for open systems. For

isolated systems with �xed N, � has a value.

3.4 Alternative Derivation for Bose-Einstein and Fermi-

Dirac Statistics

For equilibrium consideration, Tij!kl is the transition rate from i ! k accompanied by

j ! l to maintain energy conservation.

Suppose the rate depends on the occupation at k and l,

Riout = Ni

X
j;k;l

NjTij!kl(1�Nk)(1�Nl) (3.20)

Riin =
X
j;k;l

NkNlTkl!ij(1�Ni)(1�Nj)

= (1�Ni)
X
j;k;l

NkNlTkl!ij(1�Nj)
(3.21)

At equilibrium,

Ni

X
j;k;l

NjTij!kl(1�Nk)(1�Nl) = (1�Ni)
X
j;k;l

NkNlTkl!ij(1�Nj) (3.22)

Applying time-reversal invariance,

Tij!kl = Tkl!ij (3.23)
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Then for every combination i, j, k, l, we need

NiNj(1�Nk)(1�Nl) = NkNl(1�Ni)(1�Nj) (3.24)

So

Ni

1�Ni

Nj

1�Nj

=
Nk

1�Nk

Nl

1�Nl

(3.25)

ln
Ni

1�Ni

+ ln
Nj

1�Nj

= ln
Nk

1�Nk

+ ln
Nl

1�Nl

(3.26)

with

"i + "j = "k + "l (3.27)

which is the conservation of energy. Therefore

ln
Ni

1�Ni

= �� �"i (3.28)

then,

Ni

1�Ni

= e�e��"i (3.29)

Ni �Nie
�e��"i = e�e��"i (3.30)

Ni =
1

e��e�"i � 1
(3.31)

So starting with the positive (+) sign, we obtain

Ni =
1

e��e�"i + 1
Fermi-Dirac Distribution (3.32)

and with the negative (-) sign, we obtain

Ni =
1

e��e�"i � 1
Bose-Einstein Distribution (3.33)

For fermions, the rate Riout / (1 � Nk)(1 � Nl) which demostrates Pauli's Exclusion

Principle, and for bosons, the rate Riout / (1 +Nk)(1�Nl), i.e. the more particles in k

and l, the more likely the transition. (The more you have, the more you receive).



Chapter 4

Statistical Mechanics and

Thermodynamic Laws

4.1 First Law

The First law of Thermodynamics :

dU = dQ+ dW (4.1)

In Statistical Mechanics :

Total Energy; E = U =
X
j

nj"j (4.2)

Therefore

dU =
X
j

"jdnj +
X
j

njd"j (4.3)

Now, we have dW = �PdV or �0Hdm etc. This occurs when there is a change in the

boundary conditions (V, M, etc). When the boundary conditions change, the energy lev-

els change.

For example : particle in a box

"j =
~
2�2

2m

1

V
2
3

(n2x + n2y + n2z) (4.4)

Hence

dW =
X
j

njd"j (4.5)

So, e.g.

�P =
X
j

nj
@"j

@V
(4.6)

or

�0H =
X
j

nj
@"j

@m
(4.7)

26
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dW Original dQ

Then dQ=
P
"jdnj which takes place by rearrangement in the distribution.

In kinetic theory, the particles may collide with the chamber walls and acquire more

energy where the walls are hotter (with more heat added).

4.2 Second Law

We now search for a microscopic explanation for S in terms of 
. We start from the TdS

equation :

TdS = dU + PdV � �dN (4.8)

so

S � f(E; V;N) (4.9)

Also


 � g(E; V;N) (4.10)

Note : In adiabatic changes, for example, volume increase with no heat added (dQ = 0).

dS = 0 i.e. S is constant.Also dnj = 0 so 
 is also constant.

During irreversible changes, the total S in the Universe increases. The total 
 of the

Universe also increases because the equilibrium macrostate must be the maximum 
.

Now we consider 2 systems with entropy S1 and S2 and disorder number 
1 and 
2,

Total entropy,S = S1 + S2 (4.11)

Total
 = 
1
2 (4.12)

Now

S � f(
) (4.13)

so S1 = f(
1) and S2 = f(
2), Now

f(
1
2) = f(
1) + f(
2) (4.14)
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Then

@f(
1
2)

@
1

=
@f(
1
2)

@(
1
2)

2 =

@f(
1)

@
1

(4.15)

So

@f(
)

@


2 =

@f(
1)

@
1

(4.16)

Also

@f(
1
2)

@
2

=
@f(
)

@


1 =

@f(
2)

@
2

(4.17)

Then

1


2

@f(
1)

@
1

=
1


1

@f(
2)

@
2

(4.18)


1

@f(
1)

@
1

= 
2

@f(
2)

@
2

= k (4.19)

where k is a constant by separation of variables.

So

S1 = f(
1) = k ln
1 + C (4.20)

S2 = f(
2) = k ln
2 + C (4.21)

S = k ln
1 + k ln
2 + C

= S1 + S2
(4.22)

which implies that C = 0.

Therefore

S = k ln
 (4.23)

where k is the Boltzmann constant � R
NA

. (To be proven later)

Hence we have a microscopic meaning of entropy. The system is perfectly ordered when


 = 1 and S = k ln
 = 0. When more microstates are availiable 
 > 1 so S > 0. The

lesser the knowledge about a system, the more disordered it gets.

From the formula which we obtained for the relation of entropy with 
, we are unable

to deduce the value of k. The value of k comes out from the ideal gas equation.
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4.3 Third Law

As the temperature T tends to zero, the contribution to the entropy S from the system

components also tend to zero. When all the particles take the ground state, 
(E0) =

1. When the macrostate has only one microstate, it implies that there are no further

permutations for the Maxwell-Boltzmann distribution.

S = k log
(E0) = 0

Practically, some small interactions (e.g. nuclear paramagnetism) may lift the ground

state degeneracy. If kT > "int, then S 6= 0 at a given T. Hence we can only say S ! S0
as T ! 0 where S0 is the entropy associated with the remaining small interactions for

which "int < kT and independent of all the entropy for all the other interactions (degrees

of freedom).

The atoms occupying
in the ground state
are placed in fixed position
in a lattice like this.

Note that it is meaningless to talk about the exchange of particles in the same state

because they do not exchange their positions.

We know from the 2nd law of thermodynamics that heat passes from hot (high temper-

ature) to cold (low temperature) if no work is done. The internal energy U(T) increases

when T increases. Now we come to the formulation of the third law :

The Third Law of Thermodynamics states that as the temperature T ! 0, the

entropy S ! 0, it is approaching ground state as U(T) also approaches 0, ) that the

disorder number 
 tends to 1.

From the third law, T=0 is a theoretically correct statement, but it is an impossibility.

Why is this so?

The answer :

There exists very small interactions in the nucleus, made up of magnetic moments,

quadrapole moments and octapole moments etc. In order to make T = 0, the magnetic

moments are required to point in the same direction. However, experimentally, this is not

achievable.

The third law of thermodynamics can also be understood in a quantum mechanical
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perspective as the freezing out of interactions. By the Schrodinger equation :

� ~
2

2m

@2	

@x2
+ V (	) = H	

The V(	) consists of many interaction terms. Hence we can approach the total entropy,

S as a combination of entropies of many sub-systems :

S = Stotal 1 + Stotal 2 + Stotal 3

4.4 Calculation of Other Thermodynamic Variables

From chapter 2, the Partition function Z is de�ned as :

Z =
X
j

gje
�"j

kT (4.24)

where j represents all levels.

Now we try to �nd the relation between P and T, when 2 systems are in thermal equilib-

rium, where � will be the same. The � depends on the nature of the particles and volume

V etc. For the system of same identical particles, free exchange of particles will allow �

to reach the same value. Now we proceed to calculate the other thermodynamic variables.

@Z

@�
jV;N =

X
j

�"jgje��"j (4.25)

where

� =
1

kT

which is proven in tutorial.

We also de�ne the internal energy, U (or E)

U =
X
j

nj"j

=
N

Z

X
j

gje
��"j"j

= �N
Z

@Z

@�
jV;N

(4.26)

Since,

d�

dT
= � 1

kT 2
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and

1

Z
@Z = @(lnZ)

therefore,

U = �N @ lnZ

@�
jV;N

= NkT 2@ lnZ

@T
jV;N

(4.27)

We know that

nj =
N

Z
gje

��"j

) gj

nj
=
Z

N
e�"j

Then we work out ln 
,

ln
 = N lnN ! +
X
j

(nj ln gj � lnnj!)

= N lnN �N +
X
j

(nj ln(
gj

nj
) + nj)

= N lnN + �(
X
j

nj"j) +N lnZ �N lnN

= �U +N lnZ

(4.28)

Therefore

S = k ln


= k�U +Nk lnZ

=
U

T
+Nk lnZ

(4.29)

The Helmholtz free energy, F is de�ned as :

F = U � TS (4.30)

Therefore

F = �NkT lnZ (4.31)

Since

dF = dU � TdS � SdT

= TdS � PdV � TdS � SdT

= �SdT � PdV

(4.32)
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From the chain rule

dF = (
@F

@V
)TdV + (

@F

@T
)V dT

Therefore, we can calculate :

Pressure :

P = �(@F
@V

)T

= NkT (
@ lnZ

@V
)T

(4.33)

Entropy :

S = �(@F
@T

)V

= Nk lnZ +
NkT

Z

@Z

@T

= Nk lnZ +
U

T

(4.34)

Then we can use the results above to compute the heat capacity at constant volume :

Cv = (
@U

@T
)V (4.35)



Chapter 5

Applications of Maxwell-Boltzmann

Statistics

5.1 Classical Perfect Gas

To apply the Maxwell-Boltzmann Statistics to the classical perfect gas, we require a few

conditions :

1. The gas is monatomic, hence we consider only the translational kinetic energy (KE).

2. There is no internal structure for the particles, i.e. no excited electronic states and

the paricles are treated as single particles.

3. There is no interaction with external �elds, e.g. gravity, magnetic �elds.

4. The energy is quantized as in the case of particle in a box (in QM).

5. There is a weak mutual interaction - only for exchanging energy between particles

and establishing thermal equilibrium, but there is no interference on each other's

"j.

6. The discrete levels can be replaced by a continuous one if the spacing is small as

compared to T, i.e. �"� kT which is the classical limit.

7. The atoms are pointlike - occupying no volume.

From quantum mechanics,

"j =
~
2�2

2mL2
(n2x + n2y + n2z)

for V = L3 and where nx, ny and nz are integers.

33



CHAPTER 5. APPLICATIONS OF MAXWELL-BOLTZMANN STATISTICS 34

Now we compute the partition function, Z and in this case gj = 1, because all the

states are summed over.

Z =
X
j

e�
"j

kT

=
X
nx

X
ny

X
nz

e�
~
2�2

2mkTL2
(n2x+n

2
y+n

2
z)

=
X
nx

e
�~

2�2

2mkTL2
n2x
X
ny

e
�~

2�2

2mkTL2
n2y
X
nz

e
�~

2�2

2mkTL2
n2z

=

Z 1

0

dnxe
�~

2�2

2mkTL2
n2x

Z 1

0

dnye
�~

2�2

2mkTL2
n2y

Z 1

0

dnze
�~

2�2

2mkTL2
n2z

(5.1)

To evaluate the integral :

Let x = (
�~2�2
2mL2kT

)
1
2nx

Z 1

0

e
~
2�2n2x

2mL2kT dnx = (
2mL2kT

~2�2
)
1
2
1

2

Z 1

�1

e�x
2

dx

= L(
2mkT

h2
)
1
2

Z 1

�1

e�x
2

dx

(5.2)

where Z 1

�1

e�x
2

dx = (

Z 1

�1

e�x
2

dx

Z 1

�1

e�y
2

dy)
1
2

= (

Z 1

�1

Z 1

�1

e�(x
2+y2)dxdy)

1
2

= (

Z 1

0

rdr

Z 2�

0

d�e�r
2

)
1
2

= (
1

2
2�)

1
2

=
p
�

(5.3)

Therefore

Z = L3(
2m�kT

h2
)
3
2

= V (
2m�kT

h2
)
3
2

(5.4)

lnZ = lnV +
3

2
lnT +

3

2
ln
2m�k

h2
(5.5)

So,

P = NkT (
@ lnZ

@V
)T

=
NkT

V

(5.6)
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i.e. PV = NkT

since

PV = nRT

Nk = nR

k =
n

N
R

k =
R

NA

(5.7)

because N
n
= NA molecules per mole

U = NkT 2(
@ lnZ

@T
)V

= NkT 2 3

2

1

T

=
3

2
NkT

(5.8)

For each atom,

�U =
3

2
kT

Also the entropy is given by :

S =
U

T
+Nk lnZ

=
3

2
Nk +

3

2
Nk ln(

2m�k

h2
) +Nk(lnV +

3

2
lnT )

(5.9)

Therefore, the distribution becomes :

nj =
N

Z
e
�"j

kT

=
Nh3

V (2�mkT )
3
2

e
�"j

kT

(5.10)

where j represent all nx, ny and nz states.

The number of particles having energies between " and "+�" :

�n =
Nh3

V (2�mkT )
3
2

e
�"
kT
dn

d"
�" (5.11)

where dn

d"
is the density of states, i.e degeneracy dn

d"
�".

To calculate the density of states, we consider the quantum numbers nx, ny and nz
making up the grid points with each grid point representing one state.
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By writing

R2 = n2x + n2y + n2z

The number of points (states) with energy up to "R lie within a sphere of volume 4
3
�R3.

Only positive n's are allowed so we take the positive octant.

The number of states lying between energy " and "+�" will become :

dn

d"
�" =

1

8
(4�R2)�R

=
1

8
(4�R2)

dR

d"
�"

(5.12)

Using

" =
~
2�2

2mL2
R2

we obtain,

d"

dR
=

~
2�2

mL2
R

Therefore,

dn

d"
�" =

�

2
R
mL2

~2�2
�"

=
�

4

(2m)
3
2L3

~3�3
"
1
2�"

= 2�V
(2m

3
2

)

h3
"
1
2�"

(5.13)

Therefore,

�n =
V Nh3e�

"
kT

(2�mkT )
3
2

2�v
(2m)

3
2

h3
"
1
2�"

=
N"

1
2 e�

"
kTp

�

4
(kT )

3
2

�"

(5.14)

For the momentum distribution, we use :

" =
p2

2m

and

d"

dp
=

p

m
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So, the number of particles have momentum between p and p + �p is :

�n =
Np

�
4
(kT )

3
2

pp
2m

e�
p2

2mkT
d"

dp
�p

=
N

(2�mkT )
3
2

4�e�
p2

2mkT p2�p

(5.15)

Note that ZZZ
all p space

dpxdpydpz =

Z 2�

0

d�p

Z �

0

sin �pd�p

Z 1

0

p2dp

=

Z 1

0

4�p2dp

(5.16)

Therefore we can also express in px, py and pz as

�n =
N

(2�mkT )
3
2

e�
p2

2mkT �px�py�pz

=
N

(2�mkT )
3
2

e�
p2x+p

2
y+p

2
z

2mkT �px�py�pz

=
N

(2�mkT )
3
2

e�
p2x

2mkT �pxe
�

p2y

2mkT �pye
�

p2z
2mkT �pz

(5.17)

For velocity distribution, we use p = mv,

�n = f(vx; vy; vz)dvxdvydvz

=
Nm3

(2�mkT )
3
2

e�
m(v2x+v

2
y+v

2
z)

2kT �vx�vy�vz

= g(v)dv

=
Nm34�

(2�mkT )
3
2

e�
m(v2)

2kT v2dv

(5.18)

which are the Maxwell distribution laws for velocities and speeds.

We invoke a few integral identities :

In =

Z 1

0

e�x
2

xndx

I0 =

p
�

2

I1 =
1

2

I2 =
1

2
I0

I3 = I1

I4 =
3

2
I2
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So,

Z 1

0

g(v)dv =
Nm34�

(2�mkT )
3
2

(
2kT

m
)
3
2

Z 1

0

e�x
2

x2dx

= N

(5.19)

The mean speed, �v

�v =
1

N

Z 1

0

vg(v)dv

=
m34�

(2�mkT )
3
2

(
2kT

m
)2
Z 1

0

e�x
2

x3dx

=

r
8kT

�m

(5.20)

and mean square speed is

�v2 =
1

N

Z 1

0

v2g(v)dv

=
m34�

(2�mkT )
5
2

Z 1

0

e�x
2

x4dx

=
3kT

m

(5.21)

Average energy,
1

2
m �v2 =

3

2
kT (5.22)

Root mean square (RMS) speed,
p

�v2 =

r
3kT

m
> �v (5.23)

The most probable speed :

dg(v)

dv
= 0) 2vpe

�mv2

2kT �
mv3p

kT
e
�mv2

2kT = 0

) vp =

r
2kT

m

(5.24)
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V

TVp V

Maxwell Distribution of Molecular Speeds

V2

vp < �v <
p

�v2

5.2 Harmonic Oscillator

We now consider the simple 1-D harmonic oscillator in equilibrium at T, with the

Hamiltonian, H =
p2

2m
+
1

2
k0x

2

"j = (j +
1

2
)~!

where j = 0,1,2,.....

! =

r
k0

m

Assume the oscillators are independent and distinguishable,

nj =
N

Z
e
�"j
kT

Z =

1X
j=0

e�
(j+1

2
)~!

kT

= e�
~!
2kT

1X
j=0

e�
j~!

kT

= e�
~!
2kT

1

1� e�
~!
kT

= e�
�~!

2
1

1� e��~!

(5.25)
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Note : for a series of a, ar, ar2,.......

1X
n=0

arn =
a

1� r

lnZ = �1

2
�~! � ln(1� e��~!) (5.26)

U = �N @lnZ

@�

=
1

2
N~! +

N

1� e��~!
~!e��~!

= N~![
1

2
+

1

e�~! � 1
]

= N~![
1

2
+

1

e
~!
kT � 1

]

(5.27)

At low T, U � 1
2
N~!, it means that the oscillators are in ground state.

At high T,

U = N~![
1

2
+

1

1 + ~!

kT
+ :::� 1

]

= N~![
1

2
+
kT

~!
]

= NkT

(5.28)

which is the classical result.

The high energy states are occupied. Quantization is not important for kT >> �"(=

~!)

5.3 Equipartition Theorem

The Equipartition theorem states that all terms in the Hamiltonian with squared co-

ordinates (x or px etc) will contribute � 1
2
kT to the average energy, provided quantization

is not important. This is re
ected in the classical regime at high T (where kT >> �"int.

Example 1 : Ideal Gas,

H = kinetic energy only

=
p2x
2m

+
p2y

2m
+

p2z
2m

Therefore

U =
3

2
kT �N atoms

=
3

2
NkT
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Example 2 : 1-D Harmonic Oscillator,

H = Kinetic energy + Potential energy

=
p2x
2m

+
1

2
k0x

2

Therefore

U = kT �N atoms

= NkT

With quantization setting in at low T, the Hamiltonian is frozen out and the contribution

is not 1
2
kT.

Example 3 : Diatomic gas,

For translational motion,

Htrans =
p2x
2m

+
p2y

2m
+

p2z
2m

For rotational motion,

Hrot =
1

2

L2
x

Ix
+
1

2

L2
y

Iy

neglecting rotation about z-axis.

For vibrational motion,

Hvib =
p
02
z

2m
+
1

2
k0z

02

where z' is the relative coordinate between the 2 atoms.

Therefore, the total internal energy, U should be 7
2
NkT. However, the experimental

results show that U = 5
2
NkT.

The reason is because the vibrational motion is frozen out, i.e. ~!vib >> kT. So in

terms of Hvib, the atoms are in ground state, i.e. atoms don't appear to vibrate much at

normal temperature.

Total H = Hvib +Htrans +Hrot (5.29)



Chapter 6

Paramagnetic Systems

6.1 Introduction

For a paramagnetic spin system, the atoms have unpaired electrons or partially �lled

orbitals. The net angular momentum ~J for each atom is equal to both the linear orbital

angular momentum, ~L and spin, ~S. It also acts like the magnetic moment.

�J = �gJ�BJ (6.1)

When the system interacts with an external magnetic �eld,

Hamiltonian, H = �~� � ~B
= gJ�B ~B � ~J
= gJ�BBzJz (Quantization)

(6.2)

The Jz and J are observed from atomic physics.

�B =
e~

2mc
(Bohr Magneton)

In a solid, the outer electrons are involved in valency for chemical bonds, which are ulti-

mately paired up so that the net J of outer electrons is zero. The inner core, particularly

3d, 4d and 4f orbitals of many elements are not involved in valency, so magnetism arises

from their S, L and J.

In many solids of transition elements (3d), the orbital quenching occurs, so that the

net L = 0 for atoms in the ground electronic state. Note that the excited electronic states

are unoccupied at room temperature because �" >> kT .

Hence in the ground electronic state of 3d elements, there is a degeneracy of (2S + 1)

states. Note that J = S.

42
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Applying B-�eld to a spin 3
2
system :

 3

 1

-1

-3

 2

 2

2

2

B
 0

For example,

S = 3/2 system

Hamiltonian, H = gs�BBSz (6.3)

and gs � 2 for electron spin.

The distribution in the spin states is associated with the spin temperature TS which

may not be the same as the lattice temperature TL. A mechanism must exist for TS and

TL to establish thermal equilibrium - spin-phonon interaction. This is important in spin

resonance experiments such as electron spin resonance and nuclear magnetic resonance,

and determines the relaxation time � .

6.2 Spin 1
2
Quantum System

We consider the system of N magnetic atoms of spin 1
2
due to 1 unpaired electron.

The magnetic moment, � = �gs�BSz

= �1

2
gs�B

(6.4)

The Zeeman interaction with external �eld gives energy levels

gs�BBzSz = �
1

2
gs�BB (6.5)

where gs � 2 and �B is the Bohr magneton.

The � energies correspond to spin # (� antiparallel to B) or spin " (� parallel to B).
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So

"" = �
1

2
gs�BB (6.6)

"# = +
1

2
gs�BB (6.7)

Using the Maxwell-Boltzmann distribution,

n" =
N

Z
e+

gs�BB

2kT (6.8)

n# =
N

Z
e�

gs�BB

2kT (6.9)

where

Z = e+
gs�BB

2kT + e�
gs�BB

2kT

= 2 cosh(
gs�BB

2kT
)

(6.10)

Therefore, the total energy, E :

E =
N

Z
(�1

2
gs�BBe

+
gs�BB

2kT +
1

2
gs�BBe

�
gs�BB

2kT )

= �Ngs�BB
Z

(sinh(
gs�BB

2kT
))

= �Ngs�BB
Z

(tanh(
gs�BB

2kT
))

(6.11)

The entropy S :

S =
U

T
+Nk lnZ

= �Ngs�BB
T

(tanh(
gs�BB

2kT
)) +Nk ln(2 cosh(

gs�BB

2kT
))

(6.12)

The magnetization M :

M =
1

V

X
j

nj�j

=
N

V Z

X
�je

+
�jB

kT

=
N

V Z
[
1

2
gs�Be

gs�BB

2kT � 1

2
gs�Be

�
gs�BB

2kT

=
N

V Z
gs�B sinh(

gs�BB

2kT
)

=
1

2

N

V
gs�B tanh(

gs�BB

2kT
)

= � E

BV

(6.13)

where " = �B
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6.3 Spin J Quantum System

Now we consider a system with total angular momentum J in an external B-�eld.

0

B=0 B

+J

+(J-1)

-(J-1)

-J

mJ = �J;�(J � 1); ::::::; 0; 1; ::::; (J � 1); J

Therefore there are (2J + 1) states.

"J = gJ�BBmJ (6.14)

where gJ is the Lande g-factor (an experimental quantity).

Let

y = gJ�BB�

Therefore, the partition function,

Z =

JX
mJ=�J

egJ�BB�

=

JX
mJ=�J

eymJ

= e�yJ
2JX

mJ=0

eymJ

= (e�yJ)
e(2J+1)y � 1

ey � 1
(G.P sum =

a(rn � 1)

r � 1
)

=
e(J+1)y � e�Jy

ey � 1

=
e(J+

1
2
)y � e�(J+

1
2
)y

e
1
2
y � e�

1
2
y

=
sinh(J + 1

2
)y

sinh y

2

(6.15)
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Therefore,

nJ =
N

Z
e��"J

=
N

Z
e��gJ�BBmJ

(6.16)

Then

Magnetization, M =
N

V Z

X
gJ�BmJe

�gJ�BBmJ

=
N

V Z

1

�

@Z

@B

=
N

V Z

1

�

@Z

@y

@y

@B

=
N

V Z
gJ�B

@Z

@y

=
N

V
gJ�B

@ lnZ

@y

(6.17)

lnZ = ln(sinh(J +
1

2
)y)� ln(sinh

y

2
) (6.18)

M =
N

V
gJ�B(

(J + 1
2
) cosh(J + 1

2
)y

sinh(J + 1
2
)y

�
1
2
cosh y

2

sinh y

2

)

=
N

V
gJ�B((J +

1

2
) coth(J +

1

2
)y � 1

2
coth

y

2
)

=
N

V
gJ�BJBJ(y)

(6.19)

where

BJ(y) =
1

J
[(J +

1

2
) coth(J +

1

2
)y � 1

2
coth

y

2
] Brillouin function (6.20)

We proceed to evaluate other thermodynamic quantities :

Helmholtz free energy, F = �NkT lnZ

= �NkT [ln(sinh(J +
1

2
)y)� ln(sinh

y

2
)]

(6.21)

Internal energy, U = �N @ lnZ

@�

= �N @ lnZ

@y

@y

@�

= �NgJ�BBJBJ(y)

(6.22)
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Entropy, S =
U

T
+NK lnZ

= �NgJ�BBJBJ(y)

T
+Nk[ln(sinh(J +

1

2
)y)� ln(sinh

y

2
)]

(6.23)

At high T, y << 1, and for small x,

coth x =
ex + e�x

ex � e�x

=
e2x + 1

e2x � 1

= (1 + 2x+
4x2

2
+ :::: + 1)(1 + 2x +

4x2

2
+
8x3

3!
+ :::::� 1)�1

=
1

2x
(2 + 2x + 2x2 + ::::)(1 + x+

2x2

3
+ :::)

=
1

x
(1 + x + x2 + :::)(1� (x+

2x2

3
+ :::) + (x +

2x2

3
:::::)2::::)

=
1

x
(1 + x� x+ x2 � x2 � x2

3
+ 2::::)

=
1

x
(1 +

x2

3
+ :::::)

=
1

x
+
x

3

(6.24)

So,

BJ(y) =
1

J
[(J +

1

2
)(

1

(J + 1
2
)y

+
(J + 1

2
)y

3
)� 1

2
(
1
y

2

+
y

2

3
)]

=
1

J
[
1

y
+
(J + 1

2
)2y

3
� 1

y
� y

12
]

=
1

3J
[(J2 + J)y]

=
y

3
(J + 1)

(6.25)

Therefore,

M =
N

V
gJ�BJ(J + 1)

y

3

=
N

V

g2J�
2
BJ(J + 1)B

3kT

(6.26)

so,

� = �0(
@�

@B
)T

=
N

V

g2J�
2
B�0J(J + 1)

3kT

/ 1

T
(Curie's law)

(6.27)
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Since,

U = �NgJ�BBJ(J + 1)y

3
! 0

Since,

lnZ � ln(2J + 1) (6.28)

Proof :

lnZ = ln
e(J+

1
2
)y � e�(J+

1
2
)y

2

= ln[e�(J+
1
2
)y e

�(J+ 1
2
)2y � 1

2
� ln[e

�y

2
ey � 1

2
]

= �(J +
1

2
)y + ln(

1 + (J + 1
2
)2y + :::� 1

2
) +

y

2
� ln(

1 + y + ::::� 1

2

= �Jy + ln[(J +
1

2
)y + ::::]� ln[

y

2
+ ::]

= �Jy + ln(2J + 1)

� ln(2J + 1)

(6.29)

or

lnZ = ln[
(1 + (J + 1

2
)y + ::::)� (1� (J + 1

2
+ :::)

2
]� ln[

(1 + y

2
+ :::)� (1� y

2
+ :::)

2
]

= ln(J +
1

2
)y � ln

y

2
= ln(2J + 1)

(6.30)

Then

S = Nk ln(2J + 1) (6.31)

for (2J + 1) levels.

At low T, y >> 1, and for large x,

coth x =
ex + e�x

ex � e�x
= 1

So,

BJ(y) =
1

J
[J +

1

2
� 1

2
] = 1 (6.32)

Therefore

M =
N

V
gJ�BJ (6.33)

where all spins are align in the same direction (parallel to B), hence �! 0.
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lnZ = ln(
e(J+

1
2
)y � e�(J+

1
2
)y

2
)� ln(

e
y

2 � e
�y

2

2
)

= (J +
1

2
)y + ln

1

2
� y

2
� ln

1

2
= Jy

(6.34)

Internal energy, U = �NgJ�BBJ (6.35)

Entropy, S =
�NgJ�BBJ

T
+NkJy = 0 (6.36)

6.4 Adiabatic Cooling

From the third law, S ! 0 as T ! 0, so cooling reduces the entropy of system, so we

need magnetic dipoles to align in one direction.

But alignment can also be produced with a B-�eld, so we need the alignment to stay

as we reduce the B-�eld to zero.

So adiabatic cooling is two-staged.

1. Reduce the entropy by turning on the B-�eld isothermally.

The paramagnetic system is in contact with the lattice and the heat bath. As B-�eld

increases, dipoles align more and energy and entropy is taken out from the system.

Ts

Spin System

T L

Lattice
Heat 
Bath

at constant T

Heat flow

dQ
TsEntropy passed to lattice and heat bath = 

2. Reduce the temperature by turning o� the B-�eld adiabatically, i.e. isolated from

heat bath.



CHAPTER 6. PARAMAGNETIC SYSTEMS 50

Ts

Spin System

T L

Lattice

Remove the B-field adiabatically to keep spins align.

As B decreases, Sspin stays constant, so TS decreases. The lattice passes heat and

entropy back to spin. But this entropy is so small because of low TL, SLat is small,

so the heat passing is very small. (dQ = TdS). Hence both TS and TL will drop

drastically.

S

T

B = 0

B = B

Note : They obey the 3rd law

P

R

Entropy Curves obeying the third law

Q

(2)

(1)

Stage (1) : From P to Q, Isothemal Magnetization
Stage (2) : From Q to R, Adiabatic Demagnetization



Chapter 7

Applications of Fermi-Dirac

Statistics

7.1 Fermi-Dirac Distribution

From chapter 3, we obtain two quantum distributions :

1. Fermi-Dirac Distribution

nj =
gj

e��e�" + 1
(7.1)

2. Bose-Einstein Distribution

nj =
gj

e��e�" � 1
(7.2)

For either systems, � = 1
kT
. This can be proven by having the quantum system in

contact with a classical perfect gas where � = 1
kT
. The two �s will reach equilibrium at

same temperature.

Now to identify � for Fermi-Dirac distribution, we consider 2 fermion systems in ther-

mal and di�usive contact so to allow particle exchange. We also assume that the same

type of fermions for both systems.

With the same constraints :

X
ni +

X
nj = NX

ni"i + nj"j = E


 = 
i
j

=
Y
i

gi

ni!(gi � ni)!

Y
j

gj

nj!(gj � nj)!
(7.3)
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ln
 =
X
i

gi ln gi � gi � (gi � ni) ln(gi � ni) + (gi � ni)� ni lnni + ni

+
X
j

gj ln gj � gj � (gj � nj) ln(gj � nj) + (gj � nj)� nj lnnj + nj

=
X
i

gi ln gi � (gi � ni) ln(gi � ni)� ni lnni +
X
j

gj ln gj � (gj � nj) ln(gj � nj)� nj lnnj

(7.4)

dln
 =
X
i

ln(gi � ni)dni + dni � lnnidni � dni +
X
j

ln(gj � nj)dnj + dnj � lnnjdnj � dnj

=
X
i

(ln
gi � ni

ni
)dni +

X
j

(ln
gj � nj

nj
)dnj

= 0

(7.5)

Using the method of Lagrange multipliers,

�(
X
i

dni +
X
j

dnj) = 0

��(
X
i

"idni +
X
j

"jdnj) = 0

So,

X
i

(ln
gi � ni

ni
� � + �"i)dni +

X
j

(ln
gj � nj

nj
� � + �"j)dnj = 0 (7.6)

Then Choose � and �, so that

ln
gi � ni

ni
� � + �"i = 0

ln
gj � nj

nj
� �+ �"j = 0

Then

ni =
gi

e��e�"i + 1

nj =
gj

e��e�"j + 1

So the two systems in thermal contact have the same � and the two systems in di�usive

contact will have the same �, which is related to �.

The di�usive contact gives rise to chemical equilibrium, so

�i = �j = � (chemical potential)

Suppose we take one of the systems :

Sj = k ln
j

=
X
j

gj ln gj � (gj � nj) ln(gj � nj)� nj lnnj
(7.7)
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Then

dS = k
X
j

ln(gj � nj)dnj + dnj � nj lnnj � dnj

= k
X
j

ln
gj � nj

nj
dnj

= k
X
j

(�� + �"j)dnj

= �k�
X
j

dnj + k�
X
j

[d(nj"j)� njd"j]

= �k�dN + k�dU � k�dW

(7.8)

TdS = �kT�dN + dU � dW

= ��dN + dU � dW
(7.9)

because

dU = TdS + dW + �dN

Therefore

� =
�

kT
(same derivation for bosons) (7.10)

So

nj =
gj

e
"j��

kT + 1
(7.11)

where � dN is the work done in moving the fermions from one place to another, e.g elec-

trical work.

7.2 Free Electron Model of Metals

The valence electrons (in the outermost shell) are loosely bound, i.e. takes little energy

to detach them, hence they have low ionisation potential.

In metal, the weakly attached conducting electrons are \free" to move in the lattice.

The electrons interact with the electrostatic potential of the positive ions in the lattice. If

we consider the periodicity of the potential, we will obtain the solution to the Schrodinger

equation in the form of Bloch waves. The energy will form a band.

For perfect stationary lattice, there is free propagation and in�nite conductivity of

electrons. However lattice imperfections, lattice vibrations (phonons) and the scattering

by the other electrons leads to resistance in the lattice.

In the free electron model, we apply Fermi-Dirac Statistics - electrons of spin �1
2
and

� = �1
2
. We neglect the lattice potential, the electrons are con�ned in a box (body of
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metal) and we neglect the mutual interactions(electron-electron scattering).

For single particle state (nx, ny, nz, �), the energy is given by :

"nx;ny;nz;� =
~
2�2

2mL2
(n2x + n2y + n2z)

=
~
2

2m
k2

(7.12)

where k is the wavevector 2�
�
and is de�ned by the following relation :

k2 =
�2

L2
(n2x + n2y + n2z) (7.13)

nz

  nx

ny

nR

Number of states from k=0 to k=k =
1

8
� 4

3
�n3R � 2 (7.14)

(Note : we multiply the relation by 2 because of the 2 spin states and 1
8
because we

only take the positive octant, i.e. nx, ny and nz are all positive integers.)

Number of states between k and k+dk =
1

8
� 4�k2dk � 2� (

L

�
)3

=
V

�2
k2dk

(7.15)

Number of states between " and "+d" is g(")d" =
V

�2
2m"

~2

dk

d"
d"

=
V

�2
2m"

~2

m

~2k
d"

=
V

�2
2m2"

~4

r
~2

2m"
d"

=
V

2�2
(2m)

3
2

~3
"
1
2d"

= V C"
1
2d"

(7.16)
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where

C =
1

2�2
(2m)

3
2

~3

Therefore,

N =
X
j

nj

=
X
j

gj

e�("j�� + 1

=

Z 1

0

g(")d"

e�("j��) + 1

(7.17)

E =
X
j

nj"j

=
X
j

"jgj

e�("j��) + 1

=

Z 1

0

"g(")d"

e�("j��) + 1

(7.18)

We solve equation (7.17) for �(N; T; V ) and use � in (7.18) to obtain ". This is di�cult

to evaluate except at low T. We shall try to evaluate this in 2 cases

1. At T = 0

Probability of occupation of state of energy is fF�D(") =
1

e�("j��) + 1
(7.19)

EF

f

E

1

0

F-D (E)

For

�(T = 0) = "F Fermi energy (7.20)

and

fF�D(") = 0 " > "F

fF�D(") = 1 " < "F
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Hence

N =

Z 1

0

g(")fF�D(")d"

=

Z "F

0

g(")d"

= V C

Z "F

0

"
1
2d"

= V C
2

3
"
3
2

F

(7.21)

and

"F = [
3N

2V

2�2~3

(2m)
3
2

]
2
3

= (
3N�2

V
)
2
3
~
2

2m

=
~
2

2m
k2F

(7.22)

kF = (
3N�2

V
)
1
3 (7.23)

The meaning of Fermi energy is that all states below "F are occupied and all states

above "F are unoccupied at T = 0.

At T=0, all electrons occupy the lowest possible state subject to the Exclusion

Principle, so the states are �lled until "F .

Total Energy, E =

Z 1

0

g(")fF�D(")d"

= V C

Z "F

0

"
3
2d"

= V C
2

5
"
5
2

=
3

5
N"F

(7.24)

2. At low T, kT
"F

<< 1, we want to �nd Cv and we know that the experimental value

is proportional to T.

N =

Z 1

0

g(")fF�D(")d"

Therefore,

U =

Z 1

0

"g(")d"

e�("��) + 1

=

Z 1

0

("� "F )g(")d"

e�("��) + 1
+

"Fg(")d"

e�("j��) + 1

=

Z 1

0

("� "F )g(")d"

e�("��) + 1
+N"F

(7.25)
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Then

Cv = (
@U

@T
)V

= �
Z 1

0

("� "F )g(")e
�("��)

(e�("j��) + 1)2
� [("� �)(� 1

kT 2
� 1

kT

@�

@T
)]d"

(7.26)

Since � does not change much, so we assume @�

@T
= 0 and � = "F ,

Cv =
1

kT 2

Z 1

0

("� "F )
2e�("�"F )V C"

1
2d"

(e�("�"F ) + 1)2
(7.27)

Now,

�e�("�"F )

(e�("�"F ) + 1)2
= �@fF�D(")

@"
(7.28)

The maximum occurs at " = "F . The value drops to
1
e
of the maximum value when

"� "F � �kT . So the function is sharp for small kT (<< "F ).

kT

EF
E

dfF-D (E)

dE

The contribution to the Cv integral comes mainly from values of " near "F , i.e.

" � "F

Cv =
1

kT 2
V C"

1
2

F

Z 1

0

("� "F )e
�("�"F )d"d"

(e�("�"F ) + 1)2

= V C"
1
2

Fk
2T

Z 1

"F

x2exdx

(ex + 1)2
where x = �("� "F )

(7.29)

The lower limit can be extended to �1 because kT<< "F .Z 1

�1

x2exdx

(ex + 1)2
=
�2

3
(7.30)

Therefore

Cv =
�2

3
k2Tg("F ) (7.31)

where g("F ) is the density of states of Fermi level.

The physical picture :
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T = 0

T>0

E EF

g(E)f F-D (E)

For T = 0 : All states are occupied within " = "F is a truncated parabola.

For T> 0 : We will expect electrons to gain energy kT. However, most electrons

cannot gain kT because the states above them are already occupied. Only those

electrons near "F can gain kT to move into unoccupied states. This results in a

rounded-o� cli� at "F .

An alternative estimate :

Number of electrons involved is g("F )kT and they gain kT. Therefore

Energy of excitation = g("F )k
2T 2 (7.32)

Contribution to Cv, heat capacity =
The number of electrons participating� energy

�T

=
g("F )kT � kT

T

= f("F )k
2T

(7.33)

Experimental result : Cv / T for a fermi gas. The theory is in agreement but does

not give the right constant of proportionality, and need to include e�ective mass of

electron m�
e > me because electrons are not completely free but the lattice potential

constrains them.



Chapter 8

Applications of Bose-Einstein

Statistics

8.1 Introduction to Black Body Radiation

First, we discuss radiation in thermal equilibrium. The radiation is enclosed in vessel, and

all the walls are at temperature T. The atoms in the wall will absorb and emit electromag-

netic radiation. At equilibrium, the distribution of photons will follow the temperature T.

Second, in order to study the radiation, we assume a hole is cut in the chamber wall to

emit some radiation. The hole is very small so that the equilibrium is not disturbed. This

will approximate to a blackbody. The black body will also absorb all radiation falling on

it. The radiation bounces inside the chamber until �nally being absorbed.

In this chapter, we will study black body radiation using statistical mechanics. We

note that the photons have the following characteristics :

1. The photons have spin 1 (bosons) and they obey Bose-Einstein statistics.

2. The photons do not interact with one another.

3. The photons have zero rest mass and travel at c, the speed of light.

4. The photons satisfy the dispersion relation, ! = ck, so,

" = ~! = ~ck

59
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8.2 Bose-Einstein Distribution

Small Blackbody

Perfect 
Insulating 
Walls

We consider a system of a small blackbody placed inside a chamber with perfect insulating

walls. The features of the system are as follows :

1. The blackbody absorbs and emits radiation until thermal equilibrium is established.

2. The number of photons are not conserved because of absorption and re-emission.

This implies that � and � = 0.

3. The blackbody is so small that heat capacity is negligible. The energy content of

photons are not changed.

E =
X
j

nj"j = constant (for the photons)

For bosons,


 =
Y
j

(nj + gj � 1)!

nj!(gj � 1)!
(8.1)

Maximise 
 subject to E = constant only.

ln
 =
X
j

[ln(nj + gj � 1)!� lnnj!� ln(gj � 1)!]

=
X
j

(nj + gj � 1) ln(nj + gj � 1)� (nj + gj � 1)� nj lnnj + nj � (gj � 1) ln(gj � 1) + (gj � 1)

=
X
j

(nj + gj � 1) ln(nj + gj � 1)� (gj � 1) ln(gj � 1)� nj lnnj

(8.2)

d(ln
) =
X
j

ln(nj + gj � 1)dnj + dnj � nj lnnj � dnj = 0 (8.3)

X
ln(

nj + gj � 1

nj
)dnj = 0
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�
X
j

dnj"j = 0

Therefore X
[ln(

nj + gj � 1

nj
)� �"j]dnj = 0 (8.4)

So,

nj =
gj

e�"j � 1
(8.5)

for large gj and nj.

Bose-Einstein function =
1

e�"j � 1
(8.6)

Prove � = 1
kT

by having the photon system in thermal contact with another system at

temperature T and use walls that can exchange energy.

8.3 Planck's Radiation Formula

Consider photons enclosed in a box L3, standing electromagnetic waves result such that

n

2
� = L

Therefore

kx =
2�

�x
=
nx�

L

ky =
2�

�y
=
ny�

L

kz =
2�

�z
=
nz�

L

For any photon with ~k = (kx, ky, kz),

!2

c2
= k2 = k2x + k2y + k2z (8.7)

For any ~k, there are 2 polarizations - 2 linear or 2 circular.

nz

  nx

ny

nR
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Therefore,

Number of photon states for k=0 to k=k =
1

8
� 4

3
�n3R � 2

=
�

3

L3

�3
k3

(8.8)

since

n2R =
L2

�2
k2

Number of photon states between k and k+dk =
V

�2
k2dk (8.9)

Number of photon states between frequency range ! and !+d! =
V

�2
!2

c2
d!

c

=
V !2d!

�2c3

(8.10)

The number of photons in frequency range ! and !+d! is

N(!)d! = (Density of states)� (Bose-Einstein function)

=
V !2d!

�2c3(e�~! � 1)

(8.11)

Thus the energy of the photons in the frequency range ! and !+d! is

~!N(!)d! =
V ~

�2c3
!3d!

e�~! � 1
(8.12)

The energy density (per unit volume) in the frequency range is

u(!; T )d! =
~

�2c3
!3d!

e�~! � 1
(Planck's formula) (8.13)

u(w, T)

w

T

T1

2
T2>T1

For T2 > T1, the maximum of u(!, T) is given by :

e�~!3!2 � !2�~e�~!

(e�~! � 1)2
= 0
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) 3(e�~! � 1) = �~e�~!

) 3(ex � 1) = xex

where x = �~!

Solving numerically, x � 3, by neglecting (-1), or more accurately, x = 2.822.

Therefore,

~!max

kT
= 2:822 (8.14)

!max =
2:822k

~
T (Wien's displacement law) (8.15)

or

2�c

�max

=
2:822k

~
T (8.16)

�max =
~c

2:822k

1

T
(8.17)

So, as T rises, the colour of the blackbody changes from red to blue :

Total Energy Intensity, u(T) =

Z 1

0

u(!; T )d!

=
~

�2c3

Z 1

0

!3d!

e�~! � 1

=
~

�c3
1

�4~4

Z 1

0

x3dx

ex � 1

=
k4T 4

�2c3~3
�4

15

(8.18)

Therefore

u(T ) = aT 4 (Stefan-Boltzmann law) (8.19)

where

a =
�2k4

15c3~3

8.4 Radiation emitted by blackbody

Consider a tiny hole, �A, with photons coming from direction (�! �+ d�, �! �+ d�),

with a subtended solid angle d
, where

d
 =
r sin �d�rd�

r2

= sin �d�d�
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The total solid angle = 4�.

The photons that will pass through in time �t are located in a parallelpiped of length

c�t.

The volume of the parallelpied is dA� c�t cos �.

θ
θ

θ

dA

c t

Therefore,

No. of photons passing per unit time from direction (� ! � + d�, �! �+ d�) with a

frequency range ! to ! + d!

=
Volume of Parallelpiped

�t
� Fractional solid angle� Number density in frequency interval

= dAc cos � � d


4�
� N(!)d!

V

Therefore, the total energy radiated per unit time in frequency interval ! to ! + d!

=

Z 2�

0

d�

Z �
2

0

sin �d�
dAc cos �

4�
� ~!

N(!)d!

V

=
1

4
c~!dA

N(!)d!

V

=
1

4
cu(!; T )dAd!

Therefore

Power radiated per unit area in frequency interval from ! to ! + d!

=
1

4
cu(!; T )d!
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Total power radiated =
1

4
c

Z 1

0

u(!; T )d!

=
1

4
caT 4

= �T 4

where a = �2k4

15c3~3
.

Therefore,

� =
�2k4

60c2~3

= 5:67� 10�8 W m�2 K�4



Chapter 9

The Classical Limit

9.1 The Classical Regime

In the classical regime, there is a lack of discreteness, we consider the continuous variable

" rather than the discrete energy "r.

The energy spacing is �" << kT, and < nr > <<1 which means that there are many

unoccupied states, which are averaged over time.

In the Fermi-Dirac or Bose Einstein statistics, the classical regime is only satis�ed if

1

e�("r��) � 1
<< 1

i.e.

e�("r��) >> 1

so that

< nr >F-D,B-E � e��("r��)

= e��e��"r M-B distribution

So all the 3 distributions(Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein) distri-

butions approximate to Maxwell-Boltzmann distributions in the classical regime.

According to the Maxwell-Boltzmann statistics,

< nr >M-B=
N

Z
e��"r << 1 (9.1)

for all r, including r = 0.

So we require N

Z
<< 1, since "0 ! 0 for ground state.
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9.2 Monatomic Gas

For monatomic gas,

Z =
V

h3

�
2�mkT

� 3
2

so,

Nh3

V

�
1

2�mkT

� 3
2

<< 1

T >>

�
N

V

� 2
3 h2

2�mk

The conditions are high temperature, T and low density N

V
, and high mass, m.

Assume the energy is equipartitioned,

" =
3

2
kT (for each atom)

=
p2

2m

So,

p =
p
2m" =

h

�dB
(in QM terms) (9.2)

Then
�

1

2�mkT

� 3
2

=

�
1

4�
3
m"

� 3
2

=

�
3

2�

� 3
2 1

p3

=

�
3

2�

� 3
2
�
�dB

h

�3

(9.3)

and

N

V

�
3

2�

� 3
2

�3dB << 1

i.e.

�dB <<

�
2�

3

� 1
2
�
V

N

� 1
3

=

�
2�

3

� 1
2

l0

where l0 is the average seperation between atoms.

Examples :
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1. He gas :

N

V
= 1020 per cm3

so l0 = 2� 10�7cm

At T = 273 K, and

m =
4

6� 1023
g

so �dB = 8 �10�9 cm << l0. Hence Maxwell-Boltzmann distribution is applicable.

For liquid He at T = 4 K,

N

V
= 2� 1022 per cm3

so l0 = 4� 10�8cm.

Since �dB > l0, so Bose Einstein statistics apply.

2. For conduction electrons :

Assume 1 electron per atom,

N

V
� 1023 per cm3

hence

l0 � 2� 10�8cm

For m = 9:1� 10�31 kg and T = 273 K, �dB > l0, so Fermi-Dirac statistics apply.

T = 0

T>0

E EF

g(E)f F-D (E)

Approximately
M-B

EF

f

E

1

0

F-D (E)

T=0

T>0
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Note that

n(") / "
1
2 e��"

for M-B distributions.

9.3 Gibbs Paradox

For classical ideal gas, we assume the atoms to be distinguishable. Now we mix the vol-

umes of identical atoms.

V
N
T
S

V
N
T
S

S =
U

T
+Nk lnZ

=
3

2
Nk +Nk

�
lnV +

3

2
lnT +

3

2
ln

�
2�mk

h2

�� (9.4)

Suppose now N ! 2N, V ! 2V, we expect S!2S.

However,

S =
3

2
(2N)k + (2N)k

�
ln 2V +

3

2
lnT +

3

2
ln

�
2�mk

h2

��

= 2Sold + 2Nk ln 2

(9.5)

The problem lies with distinguishability and overcounting. Hence we use a corrected 
.

Corrected 
 =

old

N !

=
Y
j

g
nj
j

nj!

(9.6)

Therefore,

Corrected S = k lnCorrected 
� k(N lnN �N)

=
5

2
Nk +Nk

�
ln

�
V

N

�
+
3

2
lnT +

3

2
ln

�
2�mk

h2

��
(9.7)



CHAPTER 9. THE CLASSICAL LIMIT 70

Then for N ! 2N, V ! 2V,

S =
5

2
(2N)k + 2Nk

�
ln

�
2V

2N

�
+
3

2
lnT +

3

2
ln

�
2�mk

h2

��

= 2Sold

(9.8)



Chapter 10

Kinetic Theory of Gases

10.1 Introduction

Consider the distribution (for e.g. velocity, momentum, position, energy, etc) of system

of gas molecules in thermal equilibrium.

At thermal equilibrium, the momentum and spatial coordinates are independent of

each other, i.e. a molecule in any position (x,y,z) can have any momentum (px, py, pz).

For the Hamiltonian :

1. The kinetic energy (KE) terms are determined by px, py and pz.

2. The potential energy (PE) terms are determined by x, y and z.

The Boltzmann law applies to every coordinate in the Hamiltonian.

For example,

1. The probability that x-momentum which lies between px and px+dpx is :

P [px]dpx = Ae
�p2x
2mkT dpx (10.1)

where

A

Z 1

�1

e
�p2x
2mkT dpx = 1 (10.2)

2. The probability that x-velocity lies between vx and vx+dvx is :

P [vx]dvx = A0e
�mv2x
2kT dvx (10.3)

where

A0

Z 1

�1

e
�mv2x
2kT dvx = 1 (10.4)
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3. The probability that the molecule is found between and x and x+dx is :

P [x]dx = Be
�V (x)

kT dx (10.5)

where

B

Z 1

�1

e
�V (x)

kT dx = 1 (10.6)

We concentrate on the momentum and velocity distributions, hence we do not require

the interaction potential except for establishing thermal equilibrium.

For graphs of P[px] or P[vx] : the gaussian curves centred at zero.

p , v

x ]

x

P[p ], P[vx

x

For speed distribution : P[c] dc where c2 = v2x + v2y + v2z .

dc

dθ

φd

P [vx; vy; vz]dvxdvydvz = P [vx]dvxP [vy]dvyP [vz]dvz

=

�
m

2�kT

� 3
2

e
�mv2x
2kT e

�mv2y

2kT e
�mv2z
2kT dvxdvydvz

=

�
m

2�kT

� 3
2

e
�mc2

2kT dc(cd�)(csin�d�)

(10.7)

Integrating over all angles :

P [c]dc = 4�

�
m

2�kT

� 3
2

e
�mc2

2kT c2dc (10.8)

Hence, we can calculate :
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1. Most probable speed, cmax :

For cmax, put

dP [c]

dc
= 0) cmax =

�
2kT

m

� 1
2

(10.9)

2. Mean speed �c :

�c =

Z 1

0

cP [c]dc =

�
8kT

�m

� 1
2

(10.10)

3. Mean square speed, �c2 :

�c2 =

Z 1

0

c2P [c]dc =
3kT

m
(10.11)

4. Root mean square speed,
p
�c2 :

p
�c2 =

�
3kT

m

� 1
2

(10.12)

5. Mean kinetic energy (KE) :

Mean KE =
1

2
m �c2 =

3

2
kT (10.13)

Note :
�c2 = �v2x + v2y + v2z

= 3 �v2x
(10.14)

so

�v2x =
kT

m
(10.15)

10.2 Number of impacts on Area A of a wall

θ A
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The distribution of speeds : P[c] dc

The fraction of molecules travelling in direction (� ! � + d�, �! �+ d�) is

cd�csin�d�

4�c2
=
sin�d�d�

4�
(10.16)

The fraction that will reach A in time �t for above direction

=
Ac cos ��t

V
(10.17)

where V is the volume of the gas.

Therefore,

Number of impacts on area A in time �t

=

ZZZ
NP [c]dc

sin�d�d�

4�

Ac cos ��t

V
(10.18)

Number of impacts on unit area per unit time

=
N

4�V

Z 1

0

cP [c]dc

Z �
2

0

sin � cos �d�

Z 2�

0

d�

=
N

4�V
�c
1

2
(2�)

=
1

4
n�c

(10.19)

where the number density, n = N

V
.

10.3 E�usion of molecules

The number of molecules with speeds c!c+dc from direction (� ! � + d�, �! �+ d�)

imping a area in time �t is

N

4�V
cP [c]dcsin�d�d�A�t

The distribution is proportional to c P[c] dc.

The mean speed of escape, �ce :

�ce =

R
c2P [c]dcR
cP [c]dc

=
3kT
m

(8kT
�m

)
1
2

=

�
9�kT

8m

� 1
2

(10.20)
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Number of molecules escaping per unit time per unit area

1

4
m�c =

p

kT

�
8kT

�m

� 1
2

/ 1

m
1
2

(10.21)

So, the smaller molecules escapes(e�uses) faster.

10.4 Mean Free Path, �

The free path is de�ned as the distance between collisions. It is not all equal, for some

are longer and some are shorter. The more probable the collision, the shorter is the free

path.

The distribution of free path :

Probability that free path in between x and x+dx / e�
x
�
dx

�
.

We can prove this by a self consistent argument :

Probablity that collision occurs between x and x+dx

= (Probability of no collision from 0 to x)� (Probability of collisions in dx)

Comparing with the above equation, we write

Probability of no collision in dx = e
�dx
� (10.22)

Probability of collision in dx =
dx

�
(10.23)

According to (10.22),

the probability of no collision in dx = e�
dx
� (10.24)

Then,

Probability of collision in dx = 1� e
�dx
�

= 1�
�
1� dx

�

�
+ ::::

� dx

�

(10.25)

which agrees with (10.23).
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So the argument is self consistent. Also, we see that

Z 1

0

e�
x
�
dx

�
= 1 (10.26)

which is as required for probability.

Therefore,

Mean free path =

Z 1

0

xe�
x
�
dx

�

= [�xe� x
� ]10 +

Z 1

0

e�
x
�dx

= [��e� x
� ]10

= �

(10.27)

10.5 Collision cross-section, �

��
��
��
��

��
��
��
�� d

d

The moving gas molecules sweeps out a cylinder of cross section :

� = �d2 (10.28)

where d is the diameter of the each molecule.

Average volume occupied by each molecule =
V

N
=

1

n
(10.29)

So,

Mean free path, � =
V

N
� 1

�d2

=
1

n�d2

(10.30)

Taking in account of the motion of gas molecules,

� =
1p
2

1

n�
(10.31)

At stp, � � 7� 10�8m. At 10�6 mbar, � � 5 m.


