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1.1 Introduction: The phase control scheme
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Scheme proposed in Qu et al. PRL 74 1736 (1995)
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We show that this scheme can be used:

 To tame chaotic behavior.

 To avoid escapes in a system with chaos and divergences 

to infinity (boundary crisis).

 To control the dynamics in a Neuron Model. 

1.2. Applications.



6/22

2.1. Phase control of chaos

We use the paradigmatic Duffing oscillator:

Lyapunov 

exponent 

Goal: suppress the chaotic behavior.
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2.2. Numerical results: λ as a function of ε and φ

λ

We compute

the Lyapunov

exponent λ for 

different values 

of ε and φ, 

fixing r r =1

r =2r =3
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2.3. Experimental implementation on a circuit

Circuit that 

mimics the 

Duffing oscillator

Behavior
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These diagrams show the 

zones of Chaos (        ) and 

Periodic behavior (       ) for 

different values of  ε and φ, 

fixing r

r =1

r =2r =3

2.4. Experimental results.

r =1

r =2r =3
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3.1 Escapes in a Helmhotz oscillator (I)

Cubic potential

21.0 cFF12.0F
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 Aim: avoiding escapes for F=0,21.

 Implementation of the phase control method:

Perturbation amplitude 

(fixed)
Phase

3.2 Implementation of the phase control scheme
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21.0 cFF

Controlled trajectoryDiverging trajectory

3.3 Numerical evidence of control of escapes (I)

and
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3.3 Numerical evidence of control of escapes (II)

Escape rates 

for ε and φ
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3.4 Experimental implementation (I)
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Periodic orbit Chaotic orbit

Diverging orbit

3.4 Experimental implementation (II)
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3.5 Experimental phase control of escapes
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4.1 A neuron model

Phase control

(modulation amplitude)

FitzHug-Nagumo
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4.2 Experimental implementation

Two typical regimes:

Spiking

Non spiking
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4.3 Experimental results

Perturbing the 

spiking regime

Perturbing the 

non spiking

regime

The phase affects the global dynamics

r=1

r=1 r=1/2

r=1/2

ε=0.02

ε=0.02
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4.4 Some numerical results

Average number of spikes when applying a perturbation to the 

spiking regime

High (low) number implies bursting (non bursting) regime

r=1/2r=1
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5. Conclusions

 We have shown both numerical and experimentally that 

the phase control scheme can tame chaotic behavior in 

the paradigmatic Duffing oscillator.

 We have shown that this method can also be applied to 

avoid escapes in the paradigmatic Helhmoltz oscillator.

 We have shown that it can change the global bursting 

dynamics on a neuron model. 


