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1.1 Introduction: The phase control scheme
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In absence of forcing: periodic 

dynamics

Chaotic 

dynamics

We tune the phase φ in search 

of the desired behavior of the 

system, for ε<<1 and different 

values of r.
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Scheme proposed in Qu et al. PRL 74 1736 (1995)
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We show that this scheme can be used:

 To tame chaotic behavior.

 To avoid escapes in a system with chaos and divergences 

to infinity (boundary crisis).

 To control the dynamics in a Neuron Model. 

1.2. Applications.
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2.1. Phase control of chaos

We use the paradigmatic Duffing oscillator:

Lyapunov 

exponent 

Goal: suppress the chaotic behavior.
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2.2. Numerical results: λ as a function of ε and φ

λ

We compute

the Lyapunov

exponent λ for 

different values 

of ε and φ, 

fixing r r =1

r =2r =3
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2.3. Experimental implementation on a circuit

Circuit that 

mimics the 

Duffing oscillator

Behavior



9/22

These diagrams show the 

zones of Chaos (        ) and 

Periodic behavior (       ) for 

different values of  ε and φ, 

fixing r

r =1

r =2r =3

2.4. Experimental results.

r =1

r =2r =3
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3.1 Escapes in a Helmhotz oscillator (I)

Cubic potential

21.0 cFF12.0F
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 Aim: avoiding escapes for F=0,21.

 Implementation of the phase control method:

Perturbation amplitude 

(fixed)
Phase

3.2 Implementation of the phase control scheme
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   y

21.0 cFF

Controlled trajectoryDiverging trajectory

3.3 Numerical evidence of control of escapes (I)

and
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21.0 cFF
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3.3 Numerical evidence of control of escapes (II)

Escape rates 

for ε and φ
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3.4 Experimental implementation (I)
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Periodic orbit Chaotic orbit

Diverging orbit

3.4 Experimental implementation (II)
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  ,3NO CONTROL

  ,3

3.5 Experimental phase control of escapes
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4.1 A neuron model

Phase control

(modulation amplitude)

FitzHug-Nagumo
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4.2 Experimental implementation

Two typical regimes:

Spiking

Non spiking
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4.3 Experimental results

Perturbing the 

spiking regime

Perturbing the 

non spiking

regime

The phase affects the global dynamics

r=1

r=1 r=1/2

r=1/2

ε=0.02

ε=0.02
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4.4 Some numerical results

Average number of spikes when applying a perturbation to the 

spiking regime

High (low) number implies bursting (non bursting) regime

r=1/2r=1
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5. Conclusions

 We have shown both numerical and experimentally that 

the phase control scheme can tame chaotic behavior in 

the paradigmatic Duffing oscillator.

 We have shown that this method can also be applied to 

avoid escapes in the paradigmatic Helhmoltz oscillator.

 We have shown that it can change the global bursting 

dynamics on a neuron model. 


