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Excitable systems: excitability, relaxation oscillations and noise effects
Thermo-optical dynamics in semiconductor optical amplifiers

High-dimensional excitable systems: chaotic spiking and excitability of
non-trivial attractors (limit cycles, chaotic attractors)




Phenomenological definition
An excitable system displays a threshold-like response to an external perturbation:

1) Below the critical value the system responds proportionally to the perturbation, and
returns to its quiescent state.

2) Above the critical value the system responds independently (/n amplitude and
auration) of the size of the perturbation, before returning to the quiescent state.

3) Refractory period




... kxcitapihty
Dynamical mechanism
Minimal ingredients for an excitable dynamical system

a) Stable fixed point

b) Threshold
c) Mechanism able to re-inject trajectories crossing the threshold in the vicinity of

the fixed point

A simple way to account for this re-injection is through the topology of the phase
space: Adler equation (in S%)

X: Angular variable

(modulo 27)

(Fixed points)
X+ = T arccosu

If we perturb the system with a perturbation larger than the distance between
the fixed points, the trajectory will evolve returning to the initial state after
completing one full turn to the circle (inatime T,) = Excitable pulse



apx=1(x)
x(0) =xg I(t)=pyo(t-1p)
Discontinuity in the X variable: X('£,") = X(t,) + p,
Po<P, Exponential Decay
Po=Ps Pulse solution

Adler equation is a bistable system (in [0,27])
or multistable in R? (jumps of 2n)




itzhugh-Nagumo system

Dynamical Regimes

aeR and £ < 1 Single steady state : (X¢, Y,) = (a, -a + a3/3)

Stable for|a|>1
a . Control parameter Unstable for|a|< 1

At the critical value | a| =1 Supercritical Hopf
Bifurcation
— harmonic oscillations ( T = 2x / £%?)
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Itzhugh-Nagumo system

Excitability

Important feature: Threshold-like response to external perturbations

1ox1c* 2.0x0* 30x10% 2.0xi10?
Time

Po< Py = Response proportional to the
perturbation

Po> Py, = Response independent of
the perturbatlon i 1.ox10% 2.0x10% s0x10% 40x10

Time




Ingular Perturbation eor

¢ small = separation of the system evolution in two time scales: O(1) and O(g)

y as a bifurcation parameter

Stable
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Linear stability analysis | :
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Ingular Perturbation eor

= X instantaneously follows y variations

By means of the time-scale change t = et and
putting e =0

Ifx >a=dy<0
Ifx <a=dy>0

Point F acts as excitability threshold

Fixed points of the fast subsystem

(Slow manifold)
Stable points Attractive branches
Unstable points Repelling branches

a1 Rekoiedtsititgscillations




itzhugh-Nagumo system

Noise-effects: Random Pulses

If the system is in its stable fixed point:
Random events = Kramers’ law

E(t) zero mean 4-correlated gaussian noise

Noise fluctuations erratically overcome the excitability threshold

Inter-pulse time histogram

% (arb. units)

32 33 34

Time (arb. units) I 0 20 3.:2}{ hd(l *:’I 60 70 80
arb. units,




itzhugh-Nagumo system

Noise-effects: Stochastic “phase-locking”

In the quasi-harmonic regime:
Multimodal probability distribution
(peaks at nT,.,, n=1.2..)

Inter-pulse time histogram

Modulation of the excitability threshold = Modulation of emission probability




Itzhugh-Nagumo dynamics In V OAS

Schematic drawing of the tunable source:

. cmm L a A/2 wave-plate allows us to optimize the feedback strenght.
| by ! -

\

Lasar I.an
Diande

Optical injection:

Ampliier The amplifier is a 10 um diameter VCSEL,
emitting at 980 nm, operating below
threshold.

-F_'}';I:lh:l |:| i|:| |:|Ee

The control parameters are: The slave pump current, the injected wavelength and
the injected power.



Dynamical Regimes

Output power for a fixed injected frequency and power, and increasing pump current values
| =179.9 mA —180.6 mA
Power =0.8 mW

A=982.3 nm (Fixed
In the experiment)

Stable State
Limit Cicle
Random Pulses

Relaxation Oscillations

The sequence is similar to the transition between excitable and self-oscillatory regime
In a noisy Fitzugh-Nagumo system as the parameters are varied.



We apply to the pump current a pulse (8 ns) of
variable amplitude.
e 2z + & & The control parameters are fixed.

Time {pus}

Perturbation Amplitudes:
100, 200, 300, 800 mV.

Tirne (us}

In an excitable system a perturbation larger than a certain threshold triggers
the emission of a pulse whose amplitude and duration are independent on the
perturbation itself.



Itzhugh-Nagumo dynamics in V OAS

Noise effects above the Hopf bifurcation

In a certain region of the parameter space, the system shows a limit cicle:
in these conditions we add noise to the pump current via a bias-T.
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The excitable pulses are “synchronized” to the quasi-harmonic limit cicle frequency.




-Nagumo dynamics in VCSOAS

Physical mechanism

Branch AB: Because of the incresed intracavity
field, the gain (red)-shifts and the output
intensity abruptly increases.

Branch BC: The same interaction makes the
temperature vary (increase of dissipated power) =
refractive index change = cavity resonance shift.

0 50 100 150 700 Branch CD: Due to the drift of parameters,
Time the output power drops and the process begins
one more time.

300 1000 18530 2000
Time




Physical Model
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n=n(T) and the temperature of the device depends on the dissipated power:

VI A(E ~ |EP — |Ef) — B< Ry(N) > W = —3en (T =Ty — R P)

- Neglect internal losses: o, =0

- Linearize the spontaneous emission rate: Ry (N) = y,N

« Simplest description of the susceptibility: yx =-a (N — N (o + /)

« Linearize the temperature dependence of the effective index: n(T) =ny+ b(T —T,)
«Adiabatic elimination of the forward and backward fields

'TSP[GU -G - PEQ] )

—Yea(@ — ¢e + AG + pFQ)

_ (-R)(A+Ref)e” -1)
1+ R Rpe?C — 2/ RlRQEGGGS[qf? — CEG]




0.2%

0.20
1.0x10% Dx10%3.0:1 0%.0:10%5.01 0%

0.25

n.20
r.axetz maots.o0% .00 0.0 0t 1.ox10*2.0x10%.001 0%.010%5. 001 0

We change the injected power.
The other control parameters are fixed.

The same sequence can be obtained by
changing the pump current.

Time traces of the variables and corresponding
orbit in the phase-space

Time {Arb. un)



High-dimensional excitable systems




Itzhugh-Nagumo with inertial term

Single steady state : (xs, ys) =(a, -a + a3 /3)

Linear Stability analysis
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The usual Hopf bifurcation is now followed
y a period-doubling route to a small-amplitude
haotic attractor

0.85

0.90

0.95

Temporal evolution of the variable x
Increasing the control parameter a:
a=-1.0225 Period1l1

a=-1.0190 Period?2

a=-1.0172 Period 4

a=-1.0100 Chaos

B00 10040

GO0 10040
Time

Further increasing a the mean amplitude of the chaotic attractor increases
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Fixed a, spikes sequences corresponding to
different initial conditions are unrelated.
Further increasing a the rate of random spikes
increases until that a regime of periodic
oscillations is found



AOlIC SPIKINGg anad EXCItabDlil

Similar to FN with additive noise:
the noisy background triggers excitable pulses

The deterministic aperiodic background can trigger
| excitable pulses if overcomes a certain threshold

For a sufficiently strong stlmulus the system recovers its initial attractor following
a deterministic orbit that does not depend on the details of the perturbation




Ingular Perturbation eor

¢ small = separation of the system evolution in two time scales: O(1) and O(g)

5
. =1} —

~ 1k
> Stable Spirals\///

5 |
\ \ | <27, < | |+ —
S ‘- + 1}

Stable Nodes '

- -

"]"'Eq o ]_/

S‘ada les




Ingular Perturbation eor

= X instantaneously follows y variations

By means of the time-scale change t = et and
putting e =0

Defines the branches of slow motion
(Slow manifold)

slations

i

 ahxsd 1 Rekoietsin

Ifx >a=dy<0
Ifx <a=dy>0

Whenever jumps from one stable
branch to the other occurs, the system
is “spiralling” around the attractive part
of the slow manifold




Radiation-pressure driven cavity: The radiation pressure tends to increase the cavity
lenght respect to the cold cavity value= the intracavity optical power increases

Photo-thermal expansion: The increased intracavity power s/fowly varies
the temperature of mirrors = heating induces a decrease of the cavity length through

thermal expansion

1. Competition of the effects leads to Fitzhugh-Nagumo dynamics
2. The mechanical reaction of the pendulum mirror is responsible for the

Inertial features of the fast motion




Resonator: Experimental Setup




Dptomecnanical resonator:

We write the cavity lenght variations as | L.(t) = L(t) + Ly (t)

Radiation Pressure Effect

Limit of small displacements=
Damped oscillator forced by the intracavity optical power

u 1P , AP,

Photothermal Effect
The temperature relaxes towards equilibrium at a rate € and Lyoc T
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emiconaductor lasers with optoelectronic reedbac

OFlber
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emiconauctor lasers with optoelectronic reedbac
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emiconductor lasers with optoelectronic reedbac

X (arb.un. )
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Spatially extended excitable systems

Local excitable dynamics + diffusion term

'H-E

G =v+u— 3 + DV,

9 = —e(u — o) Ped(X — Xg, t—1tp)

s Excitable waves are dynamical states arising from the propagation through the whole system
of a locally induced nonlinear response

Small size optical amplifiers (transv. dim. < 10 um) Excitable systems

Broad area optical amplifiers (100 pm) Spatially extended media ?

Carriers and temperature diffusion




XCltable optical waves

Near-field images, transverse profiles
and corresponding temporal series

Figure 2.2: The experimental setup. T'S: Tunable source, OD: Optical diode, HW P:
Half-wave plate, L: Lens, BS: Beam-splitter, ' P: Fabry-Perot interferometer, PD:
Photodiode, PL: Linear polarizer, CCD: CCD camera, M: Monocromator.

Intenaity (ATh. un.}

By increasing the VCSOA bias current we pass from
a low stable state to a high stable state crossing a regime

of self-sustained oscillations

Intensity (Arb. un)

20 30
Spece ()




Excitable optical waves

Wave propagation: Detection System

If an excitable pulse is born at the center of the spot and
then it propagates
we should observe a temporal delay between the signals




XCltabie optiCal wavesS

Propagation velocity

Intensity (Arb. un.)

5 10 15 *
Time {ns) Space (um) Time (ns)

Pulse duration > delays = We can not record the entire pulse without losing temporal resolution

v’ The delay is proportional to the distance between monitored points in the middle region
then it saturates

v The amplitude of the pulses decreases

v The delays at the falling edges of the pulses are smaller = change in the refractory time
during the propagation (Finite size effects)
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