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Excitability

Phenomenological definition

An excitable system displays a threshold-like response to an external perturbation:

1) Below the critical value the system responds proportionally to the perturbation, and 

returns to its quiescent state.

2)   Above the critical value the system responds independently (in amplitude and

duration) of the size of the perturbation, before returning to the quiescent state.

3)   Refractory period
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Excitability

Dynamical mechanism

Minimal ingredients for an excitable dynamical system

a)  Stable fixed point 

b)  Threshold 

c)  Mechanism able to re-inject trajectories crossing the threshold in the vicinity of

the fixed point

A simple way to account for this re-injection is through the topology of the phase

space: Adler equation (in S1)

If we perturb the system with a perturbation larger than the distance between

the fixed points, the trajectory will evolve returning to the initial state after

completing one full turn to the circle (in a time Tr)    Excitable pulse

(Fixed points)

x: Angular variable

(modulo 2π)



Excitability

Threshold implies nonlinearity

Reinjection mechanism: 2-dimensional phase-space

I( t ) = p0 δ(t - t0 )

Discontinuity in the x variable: x( t0
+) = x(t0

-) + p0

p0<pth

x( 0 ) = xs

Exponential Decay

p0>pth Pulse solution  

Adler equation is a bistable system (in [0,2π])

or multistable in R1 (jumps of 2π)

dt x= f(x)



Fitzhugh-Nagumo system

Dynamical Regimes

Single steady state : (xs , ys) = (a , -a + a3 /3)

Stable for | a | > 1

Unstable for | a | < 1a : Control parameter

At the critical value | ac| = 1  Supercritical Hopf 

Bifurcation

 harmonic oscillations ( T = 2π / ε1/2)

Increase of the control parameter a
from a = -1.01 to a = 1.01



Fitzhugh-Nagumo system

Excitability

+ p0(t – t0)

Important feature: Threshold-like response to external perturbations

p0< pth  Response proportional to the

perturbation

p0> pth  Response independent of   

the perturbation



Singular Perturbation Theory

Fast Subsystem

 small  separation of the system evolution in two time scales:  O(1)  and O()

Fixed Points

y as a bifurcation parameter

Unstable

Stable

Stable

Linear stability analysis



Singular Perturbation Theory

By means of the time-scale change  =  t and

putting  = 0 

If x > a  dty < 0

If x < a  dty > 0

This define the flux direction

on the cubic

Slow Evolution

Fixed points of the fast subsystem

define the branches of slow motion

(Slow manifold)

Stable points              Attractive branches

Unstable points          Repelling branches

 x instantaneously follows y variations

x = a

a2 > 1 : Excitability

x = a

a2 < 1 : Relaxation-oscillations

F*

Point F acts as excitability threshold



Fitzhugh-Nagumo system

Noise-effects: Random Pulses

(t) zero mean -correlated gaussian noise

If the system is in its stable fixed point:

Random events  Kramers’ law

Noise fluctuations erratically overcome the excitability threshold

Inter-pulse time histogram



Fitzhugh-Nagumo system

Noise-effects: Stochastic “phase-locking”

(t) zero mean -correlated gaussian noise

Modulation of the excitability threshold  Modulation of emission probability

Inter-pulse time histogram

In the quasi-harmonic regime:

Multimodal probability distribution

(peaks at nTharm ,   n =1,2...)



The control parameters are: The slave pump current, the injected wavelength and

the injected power.

Schematic drawing of  the tunable source:

a /2 wave-plate allows us to optimize the feedback strenght.

Optical injection:

The amplifier is a 10 m diameter VCSEL, 

emitting  at 980 nm, operating below

threshold.

Fitzhugh-Nagumo dynamics in VCSOAs



Dynamical Regimes

Stable State

Limit Cicle

Random Pulses

Relaxation Oscillations

Output power for a fixed injected frequency and power, and increasing pump current values

The sequence  is similar to the transition between excitable and self-oscillatory regime

in a noisy Fitzugh-Nagumo system as the parameters are varied.

I =179.9 mA →180.6 mA

Power =0.8 mW 

=982.3 nm (Fixed 

in the experiment)

Fitzhugh-Nagumo dynamics in VCSOAs



Excitability Test

We apply to the pump current a pulse (8 ns) of 

variable amplitude.

The control parameters are fixed.

In an excitable system a perturbation larger than a certain threshold triggers 

the emission of a pulse whose amplitude and duration are independent on the

perturbation itself.

Perturbation Amplitudes:

100, 200, 300, 800 mV.

Fitzhugh-Nagumo dynamics in VCSOAs



Noise effects above the Hopf bifurcation

In a certain region of the parameter space, the system shows a limit cicle: 

in these conditions we add noise  to the pump current via a bias-T.

The excitable pulses are “synchronized” to the quasi-harmonic limit cicle frequency.
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Fitzhugh-Nagumo dynamics in VCSOAs



Branch AB: Because of the incresed intracavity 

field, the gain (red)-shifts and the output

intensity abruptly increases.

Physical mechanism

Branch BC: The same interaction makes the 

temperature vary (increase of dissipated power) 

refractive index change  cavity resonance shift.

Branch CD: Due to the drift of parameters,

the output power drops and the process begins 

one more time.



P



P

Fitzhugh-Nagumo dynamics in VCSOAs



Physical Model

nn(T) and the temperature of the device depends on the dissipated power:

• Neglect internal losses:   int = 0

• Linearize the spontaneous emission rate:   Rsp(N) = eN

• Simplest description of the susceptibility:    = - a (N – Nt)( + i) 
• Linearize the temperature dependence of the effective index:   n(T) = n0 + b(T – T0)

•Adiabatic elimination of the forward and backward fields



Fitzhugh-Nagumo dynamics in VCSOAs



Physical Model: dynamical regimes

We change the injected power.

The other control parameters are fixed.

The same sequence can be obtained by 

changing the pump current.

Time traces of the variables and corresponding 

orbit in the phase-space

Fitzhugh-Nagumo dynamics in VCSOAs



High-dimensional excitable systems



Fitzhugh-Nagumo with inertial term

Linear Stability analysis

Dynamical behaviour far from the bifurcation?

Single steady state : (xs , ys) = (a , -a + a3 /3)



Dynamical Regimes: Period-doubling

The usual Hopf bifurcation is now followed

by a period-doubling route to a small-amplitude

chaotic attractor

Temporal evolution of the variable x

increasing the control parameter a:

a = -1.0225    Period 1

a = -1.0190    Period 2

a = -1.0172   Period 4

a = -1.0100    Chaos

Further increasing a the mean amplitude of the chaotic attractor increases



Chaotically Spiking Canards and Oscillations

Random sequence of pulses on a chaotic basal state

1. Fixed a, spikes sequences corresponding to 

different initial conditions are unrelated.

2. Further increasing a the rate of random spikes 

increases until that a regime of periodic 

oscillations is found



Chaotic Spiking and Excitability

Excitability Test: The system is prepared in its chaotic attractor (without spikes)

For a sufficiently strong stimulus the system recovers its initial attractor following

a deterministic orbit that does not depend on the details of the perturbation

Similar to FN with additive noise:

the noisy background triggers excitable pulses

The deterministic aperiodic background can trigger

excitable pulses if overcomes a certain threshold



Singular Perturbation Theory

Fast Subsystem

 small  separation of the system evolution in two time scales:  O(1)  and O()

Fixed Points

y as a bifurcation parameter

Saddles

Stable Spirals

Stable Nodes



Singular Perturbation Theory

By means of the time-scale change  =  t and

putting  = 0 

If x > a  dty < 0

If x < a  dty > 0

Slow Evolution

Defines the branches of slow motion

(Slow manifold)

Whenever jumps from one stable

branch to the other occurs, the system 

is “spiralling” around the attractive part

of the slow manifold

 x instantaneously follows y variations

x = a

a2 > 1 : Excitability

x = a

a2 < 1 : Relaxation-oscillations



Physical Example: Optomechanical Resonator

Photo-thermal expansion: The increased intracavity power slowly varies 

the temperature of  mirrors  heating induces a decrease of the cavity length through 

thermal expansion

LASER

Radiation-pressure driven cavity: The radiation pressure tends to increase the cavity 

lenght respect to the cold cavity value the intracavity optical power increases

Optical injection on the long-wavelength side of the cavity resonance

1. Competition of the effects leads to Fitzhugh-Nagumo dynamics

2.    The mechanical reaction of the pendulum mirror is responsible for the  

inertial features of the fast motion



Optomechanical Resonator: Experimental Setup



Optomechanical resonator: Physical Model

Limit of small displacements

Damped oscillator forced by the intracavity optical power

Radiation Pressure Effect

Photothermal Effect

The temperature relaxes towards equilibrium at a rate  and Lth T

L(t) = Lrp(t) + Lth(t)We write the cavity lenght variations as



Physical model

Stationary solutions

Cubic-like manifold

Slow and fast time scales



Experimental vs Numerical Results



Semiconductor lasers with optoelectronic feedback

Cubic-like manifold

Slow and fast time scales



Semiconductor lasers with optoelectronic feedback



Semiconductor lasers with optoelectronic feedback



Spatially extended excitable media



Spatially extended Fitzhugh-nagumo

+ p0(x – x0,  t – t0)

 Excitable waves are dynamical states arising from the propagation through the whole system 

of a locally induced nonlinear response

Small size optical amplifiers (transv. dim. < 10 μm)                    Excitable systems

Broad area optical amplifiers (100  μm)                         Spatially extended media ?

Spatially extended excitable systems

Local excitable dynamics + diffusion term

Carriers and temperature diffusion



By increasing the VCSOA bias current we pass from

a low stable state to a high stable state crossing a regime

of self-sustained oscillations

CCD cannot resolve dynamics faster than 1 ms

Near-field images, transverse profiles 

and corresponding temporal series

Excitable optical waves



Wave propagation: Detection System

APD # 1 APD # 2

Iris

Output BS

Translation stage



APD #1 (Fixed)

APD #2

If an excitable pulse is born at the center of the spot and 

then it propagates

we should observe a temporal delay between the signals



Excitable optical waves



Excitable optical waves

Propagation velocity 

 The delay is proportional to the distance between monitored points in the middle region

then it saturates

 The amplitude of the pulses decreases

 The delays at the falling edges of the pulses are smaller  change in the refractory time

during the propagation (Finite size effects)

Pulse duration > delays  We can not record the entire pulse without losing temporal resolution
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