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Abstract. We demonstrate experimentally and theoretically the existence of
slow chaotic spiking sequences in the dynamics of a semiconductor laser with
ac-coupled optoelectronic feedback. The timescale of these dynamics is fully
determined by the high-pass filter in the feedback loop and their erratic, though
deterministic, nature is evidenced by means of the interspike interval (ISI)
probability distribution. We eventually show that this regime is the result of an
incomplete homoclinic scenario to a saddle-focus, where an exact homoclinic
connection does not occur.
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1. Introduction

Irregular spiking sequences in biological, chemical and electronic systems have been frequently
observed to be the result of multiple timescale dynamics [1]. Indeed, a variety of natural systems
showing this behavior (neural cells [2], cardiac tissues [3], chemical reactions [4], to name just
a few) can be mathematically described by means of slow and fast variables coupled together
(slow–fast systems). In two-dimensional phase spaces irregular spiking can forcibly appear only
in the presence of noise close to fixed points/limit cycles bifurcations (Andronov saddle-node
collisions, sub and super critical Hopf bifurcations, etc). In contrast, higher dimensional systems
can support more varied and complex dynamics, such as mixed-mode oscillations [5, 6] and
erratic bursting [2]. Here, irregular spikes are the result of complicated bifurcation sequences,
thus having a purely deterministic origin (chaotic spiking).

In many cases [7]–[10] these phenomena can be understood in terms of a paradigmatic
model known as Shilnikov homoclinic chaos (HC) [11]. HC may arise in three-dimensional
phase space when a growing periodic orbit approaches a saddle-focus becoming homoclinic
to it, i.e. biasymptotic for t → ±∞. Typical time series consist of large pulses (associated
with a homoclinic orbit in the phase space) separated by irregular time intervals in which the
system displays small-amplitude chaotic oscillations. This behavior arises in agreement with
the Shilnikov theorem, which predicts the occurrence of complex dynamics near homoclinicity
whenever the saddle-focus, with linearized eigenvalues (µ, −ρ ± iω), (ρ, µ > 0), satisfies the
condition |ρ/µ| < 1.

However, the original Shilnikov scenario is not a general explanation for the appearance of
chaotic spiking. Although each spike is obviously associated with some reinjection mechanism,
it is clear that there is no reason for such a reinjection to occur through a homoclinic orbit. For
instance, and in particular in slow–fast systems, a Hopf bifurcation can be followed by a period
doubling cascade producing a sequence of small-periodic and chaotic excitable attractors, that
develops before relaxation oscillations arise. As the mean amplitude of the chaotic attractors
grows, some fluctuations of the chaotic background spontaneously trigger excitable spikes in
an erratic but deterministic sequence [12]. Such phenomena are often referred to as incomplete
homoclinic scenarios [13] since, in the appropriate parameter range, they may mimic trajectories
close to Shilnikov conditions.

In order to understand these complex dynamics, frequently observed in biological
environments, and to provide controllable and reproducible experiments, considerable efforts
have been devoted to the search for analogous phenomena in nonlinear optical systems, and HC
has been found in CO2 lasers with feedback [14] and with a saturable absorber [15].

However, in view of future experiments concerning synchronization in laser arrays,
semiconductor lasers appear to be ideal candidates since they allow the realization of a
miniaturized chip of optoelectronically coupled units. To this end, the aim of this work is to
study the occurrence of chaotic spiking in a semiconductor laser with ac-coupled nonlinear
optoelectronic feedback. The solitary laser dynamics is ruled by two coupled variables (intensity
and population inversion) evolving with two very different characteristic timescales. The
introduction of a third degree of freedom (and a third timescale) describing the ac-feedback
loop, leads to a three-dimensional slow–fast system displaying a transition from a stable steady
state to periodic spiking sequences as the dc-pumping current is varied. For intermediate values
of the current, a regime is found where regular large pulses are separated by fluctuating time
intervals in a scenario resembling HC. The timescale of these dynamics, much slower with
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respect to typical semiconductor laser timescales (few ns), is fully determined by the high-
pass filter in the feedback loop. We eventually provide a minimal physical model reproducing
qualitatively the experimental results and showing that chaotic spiking is the consequence of an
incomplete homoclinic scenario to a saddle-focus, where an exact homoclinic connection does
not occur.

2. Experiment

We consider a closed-loop optical system, consisting of a single-mode semiconductor laser with
ac-coupled nonlinear optoelectronic feedback. The output laser light is sent to a photodetector
producing a current proportional to the optical intensity. The corresponding signal is sent to
a variable gain amplifier characterized by a nonlinear transfer function of the form f (w) =

Aw/(1 + sw), where A is the amplifier gain and s a saturation coefficient, and then fed back
to the injection current of the laser. The feedback strength is determined by the amplifier
gain, while its high-pass frequency cutoff can be varied (between 1 Hz and 100 kHz) by
means of a tunable high-pass filter. The laser (Mitsubishi ML925B6F) consists of a InGaAsP-
multiple quantum well Fabry–Perot laser diode, which provides a stable single transverse-mode
oscillation with emission wavelength of 1550 nm and continuous light output of 5 mW. The
pumping current is set close to the solitary laser threshold value (8.3 mA) and the net gain of
the whole feedback loop has been fixed to 10. Fixing both the feedback gain and frequency
cutoff and increasing the dc-pumping current, we observe the dynamical sequence shown in
figures 1(a)–(c). In the upper panel, corresponding to the lowest current, the detected optical
power is stable. As the current is delicately increased a transition to a chaotically spiking regime
is observed, where large intensity pulses are separated by irregular time intervals in which the
system displays small-amplitude chaotic oscillations (figure 1(b)). This scenario is qualitatively
similar to HC as evidenced by the characteristic time series and the experimental reconstruction
of the phase portrait through the Ruelle–Takens embedding technique (figure 1(d)). Further
increase of the current makes the firing rate higher until a periodic regime is eventually
reached (figure 1(c)). In correspondence to the large pulses, each oscillation period can be
decomposed into a sequence of periods of slow motion, near extrema, separated by fast
relaxations between them. This behavior (relaxation oscillations) is typical of slow–fast systems.
A similar dynamical sequence can be obtained as the pumping current is kept constant and the
amplifier gain is changed.

As in HC, the pulse duration (associated with a precise orbit in the phase space) is uniform,
while the interpulse times vary irregularly. This is shown by the corresponding interspike
interval (ISI) probability distribution (figure 1(e)) consisting of an exponentially decaying
function of time, typical of random processes, displaced by the pulse duration, acting as a
refractory time. Such a distribution is reminiscent of the one observed in noisy excitable
systems, where the system responds by randomly spiking on a noisy background [16]. Here,
however, there are no external forces, and the small chaotic background is clearly larger
than the residual electronic noise. Moreover, the ISI histogram displays a structure of sharp
peaks (indicated by the arrow in figure 1(e)) that could correspond to unstable periodic orbits
embedded in the chaotic attractor [12]. Indeed, we will show in the last section that a similar
distribution can be obtained by a fully deterministic model of our experiment.

The complete dynamics in our system is ruled by two coupled variables (inten-
sity and population inversion) evolving with two very different characteristic timescales.
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Figure 1. Transition from a stationary steady state to chaotic spiking and
eventually periodic self-oscillations as the dc-pumping current is varied.
(a) 8.700 mA, (b) 8.763 mA and (c) 9.050 mA. The net feedback-loop gain is 10,
and is kept fixed. (d) Experimental reconstruction of the phase portrait through
the Ruelle–Takens embedding technique. (e) The corresponding experimental
ISI probability distribution for the chaotic spiking regime.

The introduction of an ac-feedback optoelectronic loop adds both a third degree of freedom and
a third much slower timescale. While the former timescales cannot be varied experimentally
and therefore their effects on the system dynamics cannot be easily displayed, the latter one
can be changed by adjusting the high-pass frequency in the feedback loop. Results are reported
in figure 2 where the time series in the chaotic spiking regime has been compared for different
values of the feedback cutoff frequency. It is immediately evident that the increase of the cutoff
frequency leads to faster chaotic spiking regimes (figures 2(a)–(c)) until that the characteristic
slow–fast pulses disappear and only a fast large-amplitude chaos remains (figure 2(d)). As we
will discuss later, this occurs when the timescale split becomes too small to support slow–fast
pulses.

3. Dynamical model

The dynamics of the photon density S and carrier density N is described by the usual single-
mode semiconductor laser rate equations [17] appropriately modified in order to include the
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Figure 2. Chaotic spiking regime for different values of the feedback cutoff
frequency. (a) 0.1 kHz, (b) 0.25 kHz, (c) 1 kHz and (d) 5 kHz. Dc-pumping
current is 8.727 mA.

ac-coupled feedback loop

Ṡ =
[
g(N − Nt) − γ0

]
S, Ṅ =

I0 + fF(I )

eV
− γc N − g(N − Nt)S, İ = −γf I + k Ṡ, (1)

where I is the high-pass-filtered feedback current (before the nonlinear amplifier), fF(I ) ≡

AI/(1 + s ′ I ) is the feedback amplifier function, I0 is the bias current, e the electron charge, V is
the active layer volume, g is the differential gain, Nt is the carrier density at transparency, γ0 and
γc are the photon damping and population relaxation rate, respectively, γf is the cutoff frequency
of the high-pass filter and k is a coefficient proportional to the photodetector responsivity.
Compared with optical feedback, optoelectronic feedback is reliable and robust because the
system is insensitive to optical phase variations [18]–[20]. For this reason the phase dynamics of
the optical field can be eliminated. A detailed physical model of the experimental system should
also include a series of low-pass frequency filters arising from the limited bandwidth of the
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photodiode, the electrical connections to the laser, parasite capacitances, and other undesirable
electronic effects. However, we will see that such additional filters do not play a critical role in
a qualitative description of the observed dynamics, which is the aim of the present model.

For numerical and analytical purposes, it is useful to rewrite equations (1) in dimensionless
form. To this end, we introduce the new variables x =

g
γc

S, y =
g
γ0

(N − Nt), w =
g

kγc
I − x and

the timescale t ′
= γ0t . The rate equations then become

ẋ = x(y − 1), (2)

ẏ = γ (δ0 − y + f (w + x) − xy), (3)

ẇ = −ε(w + x), (4)

where f (w + x) ≡ α w+x
1+s(w+x)

, δ0 = (I0 − It)/(Ith − It), (Ith = eV γc(
γ0

g + Nt) is the solitary laser
threshold current), γ = γc/γ0, ε = ω0/γ0, α = Ak/(eV γ0) and s = γcs ′k/g.

4. Geometric theory of singular perturbation

The blow up of large slow–fast phase-space orbits and the occurrence of a chaotic spiking
regime can be understood through the following qualitative analysis. All the parameters
appearing in equations (2)–(4) are O(1) quantities except the ratio of the photon lifetimes to
the carrier lifetime, γ which is of the order of 10−3, and the renormalized cutoff frequency,
typically much smaller than γ . In these conditions equations (2)–(4) become a singularly
perturbed system of three timescales, with the rates of change for the dimensionless intensity,
carriers and feedback current ranging from fast to intermediate to slow, respectively. Geometric
theory of singular perturbation thus is readily applicable [21]. Since w typically changes at
a much slower rate than x and y, the motion splits into fast and slow epochs [22]. During
the fast evolution, the change of w can be neglected and the dynamics be described by
equations (2) and (3) with w = const as a parameter. The ‘fixed points’ of this dynamical
subsystem lay on the one-dimensional manifold 6 = 6x ∪ 6y where 6x is given by the trivial
nullcline {(x = 0, yw = δ0 + f (w), w)} and 6y = {(xw, y = 1, w)} is defined by the equation
δ0 + f (xw + w) − 1 − xw = 0. It is on this manifold then, where the slow dynamics described
by equation (4) can now take place. With respect to the fast dynamics (2) and (3) defined
on the planes w = const transversal to the slow manifold, the fixed points along 6y are
saddles if f ′(xw + w) > 1 (here f ′ is the derivative of f with respect to the x variable),
stable foci if f ′(xw + w) < 1 − γ (1 + xw)2/4xw and stable nodes in the small γ -wide band of
phase space, where 1 − γ (1 + xw)2/4xw < f ′(xw + w) < 1. On 6x , we have stable nodes if
f (w) < 1 − δ0 and saddles if f (w) > 1 − δ0, where the point given by f (w) = 1 − δ0 is the
intersection between the curves defined by 6x and 6y . Therefore, the slow manifold 6 is
composed of two attracting branches (solid curves in figure 3) 61 = 6x ∩ { f ′(xw + w) < 1} and
62 = 6x ∩ { f (w) < 1 − δ0} separated by a repelling branch, 63 = 6y ∩ { f ′(xw + w) > 1}, and
a further repelling branch 64 = 6x ∩ { f (w) > 1 − δ0} (repelling branches are dashed lines in
figure 3).

Now let w slowly vary accordingly to equation (4). Since the branches 61,2 rapidly attract
all neighboring trajectories—while 63,4 repel them—most of the time the motion has to take
place along these branches. There, equation (4) dictates that w decreases for w>−xw (shaded
region in figure 3) and grows for w<−xw. Whenever this prescription forces the system to
reach the turning point f ′(xw + w) = 1 on 6y , the trajectory forcibly jumps to 62 and flows
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Figure 3. (a) Slow manifold of the system (2–4) with a typical chaotic trajectory
(dotted line) and (b) their projection on the (w, x) plane. Solid and dashed lines
indicate the attracting and repelling parts of the slow manifold, respectively. The
shaded area indicates the region where w>−x . The full square is the fixed point
of the complete system (x1, y1, z1). Parameters are s = 11, α = 1, γ = 10−3,
ε = 2 × 10−5 and δ0 = 1.017.

along this branch. Then, when the repelling part 64 is reached, the trajectory will jump back
(after a certain amount of time) to 61. Since, apart from a small region around the turning point,
61 consists of stable foci of the fast subsystem, the trajectories near—but not strictly on—this
branch are shrinking helicoids. This is particularly evident immediately after the jump, as shown
in figure 3. Such helicoidal trajectories physically correspond to laser relaxation oscillations,
which are frequency filtered by our detection system. We conclude this analysis remarking
the key differences between the present case and homoclinic orbits. The timescale separation
makes the flow pass very close to the saddle-focus (x1, y1, z1), thus resembling a homoclinic
trajectory. However, since (x1, y1, z1) is located precisely on the slow manifold (square point in
figure 3(b)), the exact homoclinic connection does not occur.

5. Numerical results and discussion

The chaotic spiking regime arises from the interplay of the large phase-space orbits mentioned
before and a period doubling route to chaos occurring in the vicinity of the turning point.
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In correspondence with the laser threshold, δ0 = 1, the system undergoes a transcritical
bifurcation where the zero intensity solution, (x0, y0, z0) = (0, δ0, 0) and the lasing solution
(x1, y1, z1) = (δ0 − 1, 1, 1 − δ0) become unstable and stable, respectively. Above the threshold,
the stationary lasing solution loses stability through a supercritical Hopf bifurcation. This occurs
when δ0 = δH, defined by the equation

γ (ε − α + 1)δ2
H + (γ (α − 1) + ε(ε − α))δH + εα = 0, (5)

where a zero-amplitude harmonic limit cycle of angular frequency � =

√
γ ε(δH−1)

(γ δH+ε)
starts to

grow. Between this bifurcation and the periodic spiking the system passes through a cascade
of period doubled and chaotic attractors of small amplitude. This is illustrated by figure 4
where a bifurcation diagram is computed from our system by varying δ0 over a small interval
contiguous to the initial Hopf bifurcation. As δ0 approaches the turning point f ′(xw + w) = 1,
the mean amplitude of the attractors grows, until the chaotic fluctuations are sufficiently
large to eventually trigger the fast dynamics. This results in an erratic—sensitive to initial
conditions—sequence of homoclinic-like spikes on top of a chaotic background (figure 5(a)).
The corresponding ISI histogram (figure 5(b)) shows that the aperiodic (chaotic) background
triggers the (excitable) spikes in an erratic sequence, as indicated by its exponential tails.
However, on top of this background the ISI histogram displays a complicated structure of
sharp peaks revealing the complex structure of unstable periodic orbits embedded in the chaotic
attractor nonlinearly filtered by the excitability threshold.

We have eventually studied the chaotic spiking dynamics as the parameter ε (corresponding
to the high-pass frequency in the feedback loop) is increased. As in the experiment, the increase
of the cutoff frequency leads to faster chaotic spiking regimes until the duration of the slow–fast
pulses becomes of the order of the chaotic background characteristic timescale (figure 6). On the
basis of the analysis in the previous paragraph, it is now clear that the period of the phase-space
orbit is fully determined by the timescale split between the faster semiconductor laser timescales
and the much slower timescale of the ac-feedback loop. When the feedback cutoff increases such
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Figure 5. (a) Chaotically spiking regime and (b) the corresponding numerical
ISI distribution. Parameters as in figure 3.

split decreases until it becomes too small to support slow–fast relaxation oscillations. In these
conditions, geometric theory of singular perturbation no longer applies and the small-amplitude
chaotic attractor grows without spikes.

We now can notice a further difference between the present case and homoclinic scenarios.
While in the case of HC the small-amplitude chaotic oscillations take place in the plane of the
slow manifold, here they occur in the fold of the slow manifold, i.e. in a plane transverse to the
slow manifold itself [13]. This fact, together with the missing homoclinic connection mentioned
before, are the signatures of incomplete homoclinic scenarios.

In conclusion, we demonstrate experimentally the existence of slow chaotic spiking
sequences in the dynamics of a semiconductor laser with ac-coupled optoelectronic feedback.
The timescale of these dynamics is fully determined by the high-pass filter in the feedback
loop and their erratic, though deterministic, nature is evidenced by means of the ISI probability
distribution. We eventually provided a feasible minimal model reproducing qualitatively the
experimental results and allowing an interpretation in terms of an incomplete homoclinic
scenario to a saddle-focus, where an exact homoclinic connection does not occur.

In order to improve the quantitative agreement between theory and experiments several
modifications of the rate equations can be proposed, taking into account intrinsically quantum
effects such as spontaneous emission, fast saturable absorption and Auger recombination. These
effects usually appear in the equations in the form of additive nonlinear terms, multiplied by
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Figure 6. Chaotic spiking regime for different values of the parameter ε:
(a) 9 × 10−6, (b) 2 × 10−5, (c) 4 × 10−5 and (d) 8 × 10−5. Other parameters as
in figure 3.

(usually very small) coefficients. Therefore, it is expected that they should not imply strong
modifications of the slow-manifold shape which, as discussed above, is responsible for the
observed dynamics.

Experiments concerning synchronization phenomena in laser arrays are currently in
preparation and will be the subject of future work.
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