

Coronavirus (COVID-19) Detection

Application based on Convolutional Neural

Network(Deep Learning Algorithm)

Preparation of the student:

 Samah Abbas Ali

Israa Khawaam Ajoob

The supervision of: M.A.Ali Abd AlRahman

Ministry of Higher Education and

Scientific Research

University of Diyala

College of Sciences

Department of Computer Science

هہدِاء الُأ

وصلت رحلتي الجامعية إلى نهايتها وها انا قد وصلت لحصاد ثمرة

 تعبي بعد عناء ومشقَّة..

ة ونشاط، أختم بحث اليوم وها أنا جي بكل همَّ تخرُّ

 اقدم شكري وأمتناني...

 .. إلى من شرفني بحمل اسمه وانتمائي اليه، والدي

إلى نور عيني وضوء دربي ومهجة حياتي أمي ثم أمي ثم أمي ..

 الُلق والتفوق .. ةها رفيقتها وكلماتمن كانت دعوا

إلى الاهل ،والاصدقاء، وكل من ساندني ولو بابتسامة وكان له

 ضل في مسيرتي. ف

جي .أأهديكم بحث تخرُّ

 الأشِڴرَ والتْقًدِيرَ

الشكر الاول و الاخير و الابدي الى من وفقني و يسر مسيرتي ومن

الاكرام)الله و الجلال ذي الى الجميل القدر و المكان هذا لي كتب

 الرضا. تعالى(الحمدلله حتى يبلغ الحمد منتهاه و الشكر لله حتى

و تحية حب و اجلال و شكرا كبير الى كل من علمني حرفا الى كل من

 نور عقلي بعلما..

علم في بدايتي و الى المدرس حين نضوجي و الى الدكتور م شكرا لل

التعليم من ادارة و حين بلوغي شكر و تقدير الى كل من قام على

ي حيث عمادة و شكر خاص مع بالغ الاحترام و التقدير لمشرف بحث

 كان في قمة التواضع و قمة الرقي حين تعامله معنا .

 ۣۗ نه مهۣۗ هۣۗ آلَرحهۣۗ ہ آلَََ مهۣۗ سهۣۗ ۣۗ ہ به مهۣۗ ۣۗ يه آلَرحهۣۗ

نَسِانَ مٌنَ ْعلأقً)١}اقًرَا باّسِمٌ رَبڴّ الأذي خٌلأقً) (اقًرَا ٢(خٌلأقً الاأ

ڴرَمٌ) قًلأمٌ) ٣وَرَبڴّ الاأ نَسِانَ مٌالأمٌ (ْعلأمٌ ٤(الأذي ْعلأمٌ باّلأ الاأ

 [٥– ١({..الْعلأقً]٥يـعْلأمٌ)

أ الأذي امٌنَوَا مٌنَڴمٌ وَالأذيـنَ اوَتْوَا الْعلأمٌ }يـرَفْع الُلأ

 (١١)الأمٌجْادِلأه{دِرَجْاتْ

 ۣۗ لَيه هۣۗ آلَعه ۣۗ آلَََ دأقه ہصهۣۗ مهۣۗ ۣۗ يه ظهۣۗ آلَعهۣۗ

Abstract

The coronavirus disease (COVID-19) is the most recent severe diseases that has

spread globally at an exponential rate. During this crisis, any technological approach

that allows highly precise early detection of COVID-19 infection will save many lives.

The main clinical technique for COVID-19 recognition is the reverse transcription

polymerase chain reaction (RT-PCR). However, the RT-PCR testing tool is time-

consuming, inaccurate and requires skilled medical staff. Therefore, auxiliary

diagnostic tools should be developed to stop the spread of COVID-19 amongst people.

Chest X-ray imaging is a readily available method that able to serve as an extremely

good alternative for RT-PCR in identifying patients with COVID-19 diseases because

it provides salient COVID-19 virus information.

In this project, the COVID-CNNnet model proposed based on a convolutional neural

network (CNN) deep learning (DL) algorithm, to detect COVID-19 cases rapidly and

accurately based on patient chest X-ray images. The proposed COVID-CNNnet model

aims to provide an accurate binary diagnostic classification for COVID-19 cases

versus normal cases. To validate the proposed model, 3540 chest X-ray images were

obtained from multiple sources, including 1770 images for COVID-19 cases. Results

show that the COVID-CNNnet model can identify all classes (COVID-19 cases versus

normal cases) with an accuracy of 99.86%. The proposed method can assist doctors

diagnose COVID-19 cases effectively using chest X-ray images.

Table of Content

Chapter One: Introduction

1.1 Introduction Page 1

1.2 Problem Statement Page 2

1.3 Project Objectives Page 3

1.4 Project Structure Page 3

Chapter Two: Literature Review

2.1 Introduction Page 5

2.2 Machine Learning Work-flow Page 6

2.3 Different machine learning approaches Page 7

 2.3.1 Supervised learning Page 7

 2.3.2 Unsupervised Learning Page 8

 2.3.3 Reinforcement Learning Page 9

2.4 Deep Learning Page 9

2.5 Neural networks Page 10

2.6 COVID-19 Related Works Page 11

2.7 Convolutional Neural Network (CNN) Page 12

2.8 Summary Page 13

I

Chapter Three: Methodology
3.1 Introduction Page 14

 3.1.1 Dataset Collection Page 15

 3.1.2 Dataset Preprocessing and Labeling Page 16

 3.1.3 CNN Model Architecture Page 16

 3.1.4 Model Evaluation Metric Page 17

Chapter Four: Result And Implementation

4.1 Introduction Page 18

4.2 Environment setup steps Page 18

4.5 Training and Classification using CNN Page 19

Chapter Five: Conclusion And Future Work

5.1 Conclusion Page 22

5.2 Future Work Page 23

References

References Page 24-25

Appendix

Code Appendix A

II

List of Figures and Tables

Chapter One

Fig. 1.1.: Outline of the Project Page 4

Chapter Two

Fig. 2.1.: Machine Learning Work-flow Page 6

Fig. 2.2.: Supervised Learning Example Page 8

Fig. 2.3.: Different Model Performance Trends Page 9

Fig. 2.6.: Sample CNN Architecture Page 13

Chapter Three

Fig. 3.1.: The Project Methodology Steps Page 14

Figure 3.2: COVID-19 dataset (a) normal cases (b) COVID-19 cases Page 15

Table 3.1.: The Proposed CNN Model Architecture Page 17

Chapter Four

Fig. 4.1.: The Proposed System for COVID-19 detection Page 18

Fig. 4.3.: Jupter Notebook Platform Page 19

Fig. 4.3.: Accuracy for training CNN Model Page 20

Fig. 4.4.: Confusion matrices of CNN Model Page 21

III

 Chapter One: Introduction

Page | 1

Chapter One

INTRODUCTION

1.1 Introduction:

The COVID-19 disease was originated in Wuhan, China in the end of 2019 when

pneumonia cases with unknown causes rapidly spread within 30 days from Wuhan to

most parts of the country. COVID-19 quickly became a pandemic and posed a serious

public health issue worldwide [1]. This disease is induced by the SARS-CoV-2 virus,

which is related to two separate coronaviruses, namely, Middle East respiratory

syndrome viruses and severe acute respiratory syndrome (SARS) [2]. The worldwide

prevalence of COVID-19 has quarantined many individuals and damaged many

businesses. This pandemic negatively affected the quality of human life. Based on the

World Health Organization report, the estimated number of approved COVID-19

cases everywhere in the world at the time of writing this paper is 75,479,471, including

1,686,267 deaths [3].

Given the high transmissibility of the disease, early diagnosis plays an important role

in COVID-19 control [2]. The first step in the detection of any virus is to identify the

usual clinical features of a virus and use these features as special symptoms to obtain

accurate diagnosis. The symptoms of COVID-19 comprise cough, cold with fever,

tiredness, headache, sore throat, muscle pain and acute respiratory syndrome. COVID-

19 can also affect other important body organs, such as the liver [4][5]. At present,

RT-PCR is the most popular testing tool used to diagnose COVID-19 cases [6].

However, the RT-PCR process is manual, complex, laborious, and timeconsuming.

The process takes 4–6 h to achieve results, and the positivity rate is only 63% [7].

Consequently, the timely location of infected patients is difficult, and thus can lead to

the contamination of healthy patients. Therefore, finding alternative early diagnosis

methods is necessary to mitigate the inefficiency and scarcity of RT-PCR test kits and

 Chapter One: Introduction

Page | 2

an early identification of the disease to decrease the COVID-19 infection incidence

amongst people.

According to [8][3], one of the major indicators of COVID-19 infection is respiratory

difficulty, which can be easily recognised using X-ray images. X-ray is an imaging

test tool that serves as a promising alternative for RT-PCR in diagnosing COVID-19

cases because of its ability to reveal numerous white patchy shadows in the lungs of

a COVID-19 infected person [9]. Utilising chest X-ray images can solve the problem

regarding the unavailability of diagnostic RT-PCR kits and the limitations of their

manufacturing. In addition, radiological image systems are available in every hospital.

Considering that this diagnostic method is simple and easy to use, doctors can use the

images to detect the infection in suspected individuals even if the common symptoms

are not yet present [1].

1.2 Problem Statement

Recently, DL and computer vision are used to identify many biomedical problems,

such as tumour detection in the lungs [10] and brain [11], skin lesion classification

[12]. The CNN is one of the important and common DL techniques that demonstrate

excellent performance in the medical imaging field. The CNN methodology exhibits

such a satisfactory performance because it does not rely on handcrafted feature

engineering but learning features from the data automatically.

The aim of this project is to propose a DL model by based on the CNN algorithm to

achieve an effective and rapid identify of COVID-19 patients. The developed model,

called COVID-CNNnet that only uses chest X-ray images to identify the COVID-19

patients. The dataset comprised 3540 images that obtained from various sources. The

efficiency of the proposed model was measured and validated through the accuracy

metric and confusion matrices.

 Chapter One: Introduction

Page | 3

1.3 Project Objectives

The objectives of this project are as follow:

1. The main objective of the project is to explore the power of deep learning

algorithms to achieve an effective and rapid identify of COVID-19 patients.

2. Build the machine learning system to recognize the COVID-19 by using the

state of the art deep learning algorithm the CNN algorithm.

3. Explore the main machine and deep learning library such as Tensorflow, Keras

and using it with the python programming language to build the proposed

system.

1.4 Project Structure

The project is divided into five chapters. Chapter 1 this chapter provide and

introduction and the problem statement. Chapter 2 presents the background of this

project and some part of related work. Chapter 3 gives the project methodologies,

which are the steps, followed to accomplish the objectives of this project. Chapter 4

implementation and discuss the result that achieved in this project. Chapter 5

summarizes this project and suggests potential areas for future work.

 Chapter One: Introduction

Page | 4

Fig. 1.1.: Outline of the Project

Chapter Five

• Conclusion and future work

Chapter Four

• Proposed System and result

Chapter Three

Methodologies

Chapter Two

• Literature Review

Chapter One

• Introduction, Problem Statement

 Chapter Two: Literature Review

Page | 5

Chapter Two

LITERATURE REVIEW

 Machine Learning

2.1 Introduction

Machine learning (ML) techniques are being applied in a variety of fields, and data

scientists are being sought after in many different industries. With machine learning,

we identify the processes through which we gain knowledge that is not readily

apparent from data in order to make decisions. Applications of machine learning

techniques may vary greatly, and are found in disciplines as diverse as medicine,

finance, and advertising [5].

Machine learning is often associated with terms such as big data and artificial

intelligence (AI). Machine learning is the tool used for large-scale data processing. It

is well-suited to complex datasets that have huge numbers of variables and features.

One of the strengths of many machine learning techniques, and deep learning in

particular, is that they perform best when used on large datasets, thus improving their

analytic and predictive power. Machine learning is therefore the brain that allows the

machine to analyze the data ingested through its sensors to formulate an appropriate

answer. A simple example is Siri on an iPhone. Siri hears the command through its

microphone and outputs an answer through its speakers or its display, but to do so, it

needs to understand what it's being told. Similarly, driverless cars will be equipped

with cameras, GPS systems, sonars, and LiDAR, but all this information needs to be

processed in order to provide a correct answer. This may include whether to

accelerate, brake, or turn. Machine learning is the information processing method that

leads to the answer [6].

 Chapter Two: Literature Review

Page | 6

2.2 Machine Learning Work-flow

Machine learning broadly comprises of the following steps [7],

Fig. 2.1.: Machine Learning Work-flow

1. Data Collection: The very first and the most important step is to collect

relevant data corresponding to our problem statement. Accurate data

collection is essential to maintaining the integrity of our machine learning

project.

2. Data Pre-Processing: The data gathered from the previous step most

probably is not fit to be used by our machine learning algorithm yet, as this

data might be incomplete, inconsistent and is likely to contain many errors

and missing values. After taking care of all the inconsistencies, errors and

missing data in our dataset we move on to feature engineering.

3. Model Training: The pre-processed data is first divided into mainly two

parts i.e. training and testing datasets in the train/test ratio of usually 70/30

or 80/20 for smaller datasets and as our primary dataset increases in size,

the test dataset should usually decrease in size with even the train/test ratio

of 99/1 for very large datasets. Model training is the process by which a

machine learning algorithm takes insights from the training dataset and

 Chapter Two: Literature Review

Page | 7

learns specific parameters over the training period that will minimize the

loss or how bad it performs on the training dataset.

4. Model Evaluation: After the model is trained, it is then evaluated, using

some evaluation metric, on the test dataset, which it has never seen before.

Some of the most common evaluation metrics are Accuracy score, F1

Score, Mean Absolute Error (MAE) and Mean Squared Error (MSE).

5. Performance Improvement: The performance of the model can further be

improved on both the training and testing datasets using various techniques

like, cross-validation, hyper-parameter tuning or by trying out multiple

machine learning algorithms and using the one which performs the best or

even better, by using ensemble methods which combine the results from

multiple algorithms.

2.3 Different machine learning approaches

Machine learning techniques can roughly be divided in two large classes, while one

more class is often added. Here are the classes [8]:

1. Supervised learning:

2. Unsupervised learning

3. Reinforcement learning

2.3.1 Supervised learning

Supervised learning algorithms are a class of machine learning algorithms that use

previously-labeled data to learn its features, so they can classify similar but unlabeled

data. Supervised Learning is mainly divided into two specific tasks: Classification

and Regression [9].

1. Classification: It is the supervised learning task in which each set of input

variables is classified or segregated into one of the possible classes as the

output, that is, the output will only be represented by a certain discrete

value. For Example, given the performance of students of a class in

previous examinations throughout the year we wish to predict if a particular

student will Pass/Fail the final examination. This type of problem is

commonly referred to as a binary classification problem as we are trying to

 Chapter Two: Literature Review

Page | 8

predict outputs in form of just two classes, that is, “Pass” or “Fail”.

Problems with more than two classes to predict upon are referred to as

multi-class classification problems. We'll talk about some of the most

popular classical supervised algorithms the SVM algorithm.

 Fig. 2.2.: Supervised Learning Example

 Support vector machines: A support vector machine (SVM) is a

supervised machine learning algorithm that is mainly used for

classification. It is the most popular member of the kernel method class

of algorithms. An SVM tries to find a hyperplane, which separates the

samples in the dataset.

2. Regression: It is the supervised learning task in which for each set of input

variables the output is represented by continuous values.

2.3.2 Unsupervised Learning

In contrary to supervised learning, unsupervised learning is the machine learning

task in which inferences are drawn from data sets consisting of input data without

labeled responses and the main job at hand is to learn the structure and the patterns of

the given data. As we do not have labeled data, evaluating the model’s performance

is not straightforward anymore unlike in the case of Supervised Learning. One of the

most important unsupervised learning algorithms is clustering [10].

 Chapter Two: Literature Review

Page | 9

2.3.3 Reinforcement Learning

Reinforcement learning (RL) is the machine learning task concerned with how

software agents ought to take actions in an environment so as to maximize some

notion of cumulative reward. It follows the concept of hit and trial method. The agent

is rewarded or penalized with a point for a correct or a wrong answer, and on the basis

of the positive reward points gained the model trains itself. And again once trained it

gets ready to predict the new data presented to it [9].

2.4 Deep Learning

Deep Learning has been one of the biggest contributors to AI moving forward as

rapidly as it is today. Deep learning is a subfield of machine learning which makes

use of a certain kind of machine learning algorithm known as Artificial Neural

Networks (ANNs), vaguely inspired by the human brain. The major attraction of

Neural Networks has been their ability to learn complex non-linear representations of

input data [7].

 Fig. 2.3.: Different Model Performance Trends

As seen in the figure above, deep learning models tend to perform well with larger

amounts of data whereas old machine learning models stop improving after a certain

saturation point. It is also seen that larger (Deeper) NNs tend to perform even better,

but they incur larger computational costs. Why Deep Learning is taking off now? It is

because of these three major reasons:

1. Development of better algorithmic techniques and approaches.

2. The abundance of data today, courtesy of the Internet.

 Chapter Two: Literature Review

Page | 10

3. Enhanced computational powers with the advent of GPUs.

2.5 Neural networks

Neural networks and deep learning are big topics in Computer Science and in the

technology industry; they currently provide the best solutions to many problems in

image recognition, speech recognition and natural language processing. The definition

of a neural network, more properly referred to as an 'artificial' neural network (ANN),

is provided by the inventor of one of the first neuron computers, Dr. Robert

HechtNielsen. He defines a neural network as: "...a computing system made up of a

number of simple, highly interconnected processing elements, which process

information by their dynamic state response to external inputs.". The basic

computational unit of the brain is a neuron. Approximately 86 billion neurons can be

found in the human nervous system and they are connected with approximately 10¹⁴ —

 10¹⁵ synapses. The diagram below shows a cartoon drawing of a biological neuron

(left) and a common mathematical model (right) [11].

 Fig. 2.4.: biological neuron (left) and mathematical model (right)

The basic unit of computation in a neural network is the neuron, often called a node

or unit. It receives input from some other nodes or from an external source and

computes an output. Each input has an associated weight (w), which is assigned on

the basis of its relative importance to other inputs. The node applies a function to the

weighted sum of its inputs.

 Chapter Two: Literature Review

Page | 11

The idea is that the synaptic strengths (the weights w) are learnable and control the

strength of influence and its direction: expiatory (positive weight) or inhibitory

(negative weight) of one neuron on another. In the basic model, the dendrites carry

the signal to the cell body where they all get summed. If the final sum is above a

certain threshold, the neuron can fire, sending a spike along its axon. In the

computational model, we assume that the precise timings of the spikes do not matter,

and that only the frequency of the firing communicates information. we model the

firing rate of the neuron with an activation function (e.x sigmoid function), which

represents the frequency of the spikes along the axon [10].

 Types of Neural Networks

There are many classes of neural networks and these classes also have sub-classes,

such as Multi-layer perceptron (MLP), Single-layer Perceptron, Feed forward Neural

Network and Convolutional Neural Networks (CNNs). Here we will explain the most

used ones in these days the Convolutional Neural Networks (CNNs) that we used in

our experiment study [9].

2.6 COVID-19 Related Works

The diagnosis of COVID-19 infection through different types of medical images is

a fast-growing research topic. Machine learning-based methods, along with manual

feature extraction algorithms, are used in few studies to diagnose the disease [7] [5].

To rapidly identify COVID-19 cases, many studies utilised DL approaches that use

chest X-ray images to diagnose infected patients. Their findings present encouraging

results in terms of accuracy. However, these studies used a small dataset that includes

few samples of COVID-19 chest X-ray images [1] [13]. Therefore, the existing

findings cannot be generalised, and the maintenance of the reported model

performance when evaluated on a large dataset is uncertain.

Wang and et al. [14] introduced COVID-Net to recognise COVID-19 cases from a

dataset comprising 266 COVID-19 chest X-ray images. The maximum accuracy

obtained by this method is 83.5%. Ioannis et al. [1] used the transfer learning method

to classify a dataset with 1427 chest X-ray images, which consists of 224 COVID-19

cases. The authors used five DL models, namely, Inception, VGG19, Xception,

MobileNet and Inception-ResNet-v2, to identify infected patients by using chest X-

 Chapter Two: Literature Review

Page | 12

ray images. The dataset was divided for training and testing through the 10-fold

crossvalidation method. The VGG19 method was selected as the primary DL model,

which obtained an accuracy of 96.78. Afshar et al. conducted a method called COVID-

CAPS. They reached an accuracy of 95.7% from the approach without pretraining and

98.3% from the pretrained COVID-CAPS. However, the sensitivity values that they

obtained are not as high as the general accuracy [15]. Sahinbas and Catak [16] used

five different pretrained models, namely, VGG16, VGG19, ResNet, DenseNet and

InceptionV3 to study 70 COVID-positive and 70 COVID-negative data. They

achieved an accuracy of 80% by using VGG16 as their binary classifier. Narin et al.

[6] used the ResNet50 DL model to recognise 50 COVID-19 cases from 50 normal

chest X-ray image data. They reached a maximum accuracy of 98%. However, this

study does not reflect the model performance in multi-class classification. Ucar et al.

[9] adopted transfer learning methods to automatically identify COVID-19 cases from

284 chest X-ray images of COVID-19 ceases and 310 chest X-ray images of normal

individuals. The best performance reached an accuracy, precision and recall of 89.5%,

97% and 100%, respectively. However, this research is not completely tested using

different machine learning methods, and the experimental method was not explicit.

The DarkNet model, which comprises 17 leaky rectified linear unit (ReLU)

convolution layers with leaky ReLU activation feature, was developed by Ozturk et

al. [13]. This model was tested on binary and multi-class cases and achieved an

accuracy of 87.02% and 98.08% respectively.

2.7 Convolutional Neural Network (CNN)

Convolutional neural networks (aka CNN and ConvNet) are modified version of

traditional neural networks. These networks have wide and deep structure. Therefore,

they call them as deep neural networks or deep learning. Nowadays, they are so

popular because they are also good at classifying image based things. In convolutional

neural network the unit connectivity pattern is inspired by the organization of the

visual cortex, Units respond to stimuli in a restricted region of space known as the

receptive field. A CNN is a feed forward neural network with several types of special

layers. For example, convolutional layers apply a filter to the input image (or sound)

by sliding that filter all across the incoming signal, to produce an n-dimensional

activation map. There is some evidence that neurons in CNNs are organized similarly

 Chapter Two: Literature Review

Page | 13

to how biological cells are organized in the visual cortex of the brain. We've

mentioned CNNs architectures in the chapter three in details. Today, CNN outperform

all other ML algorithms on a large number of computer vision and NLP tasks [5].

Fig. 2.6.: Sample CNN Architecture

2.8 Summary

In this chapter, we covered what machine learning is and why it's so important. We

talked about the main classes of machine learning techniques and some of the most

popular classic ML algorithms. We also introduced a particular type of machine

learning algorithm, called neural networks, which is at the basis for deep learning.

Finally we describe the CNN deep learning algorithm and the related work of COVID-

19 using different deep learning approaches.

 Chapter Three: Methodology

 Page | 14

Chapter Three

METHODOLOGY

3.1 Introduction

This particular chapter describes research methodology that will be employed to

achieve the project objectives. This project propose deep learning model for

COVID19 identification, depend on chest X-ray images. The proposed method

consists of four major steps: (1) dataset gathering, (2) data preprocessing and labeling,

(3) model training and (4) model validation and analysis. Figure 3.1 shows the

complete flowchart of the COVID-CNNnet model for COVID-19 detection.

 Chapter Three: Methodology

 Page | 15

Fig. 3.1.: The Project Methodology Steps

3.1.1 Dataset Collection

Given that COVID-19 is a recent and novel disease, no large repository contains a

large amount of relevant data. Therefore, various sources were utilized to collect the

dataset. The COVID-19 images were gathered from publicly available datasets,

whereas the normal non-COVID-19 images were generated from the publicly

accessible Kaggle database. The combination of two GitHub repositories [18] [19]

provided 1770 COVID-19 data items, which were then used to test and train the

COVID-CNNnet proposed model. The repositories have different chest X-ray images

for different diseases, such as SARS, Escherichia coli, influenza and other types of

pneumonia from various patients, but only the images with positive COVID-19

infection were considered. The ages of the patients varied from 12 years to 93 years.

We also collected 1770 standard chest X-ray images of non-COVID-19 data items,

which were randomly acquired from a Kaggle dataset called “Chest X-ray Images

(Pneumonia)” (the number of non-COVID-19 images is the same as the number of

COVID-19 images to prevent the imbalanced data issue during performance analysis)

[20]. Figure 3.2 visualizes a sample of chest X-ray Images from COVID-19 and

nonCOVID-19 cases.

 Chapter Three: Methodology

 Page | 16

Figure 3.2 COVID-19 dataset (a) normal cases (b) COVID-19 cases

3.1.2 Dataset Preprocessing and Labeling

Data preprocessing is important to remove noise from the data before feeding them to

the network. All chest X-ray images were recorded in a single dataset. The original

resolution of the images ranges between 916 × 673 and 2000 × 2000 pixels. To fit the

experimental configuration and ensure the uniformity and image quality, all images

were converted into greyscale and subsequently normalized and downsized to 224 ×

224 pixels to perform real-time classification and prevent resource exhaustion and

decrease RAM usage. The greyscale color space conversion allows operating in one

channel only rather than processing in the three RGB channels. The number of

parameters of the first convolutional layer would be decreased twice by this

conversion, and the computational time would be also reduced. To introduce

randomness, the dataset was shuffled to avoid bias towards certain parameters. Onehot

encoding is performing to the image data labels to indicate if the image is a COVID-

19 positive case or a normal case.

 Chapter Three: Methodology

 Page | 17

3.1.3 CNN Model Architecture

The COVID-CNNnet model consists of four convolutional layers activated with

ReLUs activation function, three pooling layers, one dropout layer and one fully

connected layer that is also activated with ReLUs. This model ends with an output

layer that has a softmax activation function to yield the distribution of the probability

over classes. Table 2 lists the detailed dimensions of each layer and operation. The

first and second layers are convolutional layers that contain 64 feature maps and have

a kernel size of 3 × 3. Both layers are activated with ReLUs. The third layer is a 2 × 2

max pooling layer. The objective of this layer is to decrease the number of parameters

to minimise overfitting and decrease the computation time. The next layer is the third

convolutional layer, which has kernel size of 3 × 3 and 64 feature maps. This layer is

also activated with ReLUs. Another 2 × 2 max pooling layer follows the third

convolutional layer. This max pooling layer is followed by the fourth convolution

layer activated with ReLU and has 3 × 3 kernel size and 64 feature maps and follow

by another 2 × 2 max pooling layer.

The proposed network architecture of the COVID-CNNnet ends with a fully

connected layer consisting of a flatten layer, a fully connected layer, a dropout layer

and an output layer. To process the final output through standard completely

connected layers, the flatten layer transforms the 2D matrix data into a vector. The

second layer is a fully connected layer that comprises 64 neurons, which are activated

with ReLU. The next layer is a dropout layer that excludes 40% of the neurons and

the last layer is the output layer, which contains two neurons and is activated with a

softmax activation function.

Table 3.1.: The Proposed CNN Model Architecture

Layers Operation Layers Configuration

Convolution2D 64 filters, 3x3 kernel and ReLU

Convolution2D 64 filters, 3x3 kernel and ReLU

Pooling (Max) 2x2 kernel

Convolution2D 64 filters, 3x3 kernel and ReLU

Pooling (Max) 2x2 kernel

Convolution2D 64 filters, 3x3 kernel and ReLU

Pooling (Max) 2x2 kernel

Flatten 100352 Neurons

 Chapter Three: Methodology

 Page | 18

Fully connected 64 Neurons

Dropout 40%

Output Softmax 2 classes

3.1.4 Model Evaluation Metric

The Accuracy metric was to evaluate the performance of the adapted CNN algorithms.

Accuracy is the percentage of correct classifications and defines according to the

following formula.

 +

 = × 100

 + + +

Where:

 Relevant Non-Relevant

Retrieved True Positives (TP) False Positives (FP)

Not- Retrieved False Negatives (FN) True Negatives (TN)

 Chapter Four: Result

Page | 19

Chapter Four

RESULT AND IMPLEMENTATION

4.1 Introduction

This chapter describes the steps of COVID-19 recognition application and the results obtained

when using the CNN architecture. Experiments were performed using Python, mainly taking

advantage of the Theano library, Keras, and Scikit-learn libraries.

The COVID-19 recognition system can be divided into three parts according to its processing steps

figure 4.1: First step is to online collecting the dataset images and divided it into 80% for training

and 20% for testing, Second step we feed the images into CNN proposed algorithm that we design

for the COVID-19 detection and the third step we evaluate the proposed model.

Fig. 4.1.: The Proposed System for COVID-19 detection

4.2 Environment setup steps

Following are the step by step to get a development environment running

1. Visit the Anaconda homepage.

2. Click “Anaconda” from the menu and click “Download” to go to the download page.

3. Choose the download suitable for your platform (Windows, OSX, or Linux):

 Chapter Four: Result

Page | 20

4. Follow the Installation wizard.

5. Open the Anaconda Prompt and enter the following to create a python environment conda

create -n myenv python=3.5

6. Then enter the following commands to install the required dependencies for this project.

conda install -n myenv scikit-learn conda install -n myenv pandas conda install -n

myenv keras

7. Run the code using the Jupter Notebook platform see figure 4.3.

4.3 Training and Classification using CNN

 Fig. 4.2.: Jupter Notebook Platform

 Chapter Four: Result

Page | 21

The dataset was divided into two sets to test and train the performance of the developed

COVIDCNNnet model. The first collection consists of 80% from the dataset, representing 2832

images that are randomly selected for training; 20% (708 images) of the images are randomly

selected for testing. For all experiments, the batch size, learning rate and number of epochs were

set to 128, 0.0001 and 10, respectively. The COVID-CNNnet model is trained in a completely

supervised way, and its parameters are optimised by minimizing the role of the binary-entropy loss

function and Adam was used for learning. The overall classification performance of the CNN

architecture was (99.86%) that trained with 100 epochs are shown in Figure 4.3. The final Python

Code in the Appendix A.

Fig. 4.3.: Accuracy for training CNN Model

One of the precise metrics that offer insight into the accuracy of DL models is the confusion matrix.

Figure 4.4 displays the confusion matrices of the test phase of the three models for COVID-19

virus identification. The diagonal elements represent the number of correctly labeled data, whereas

the off-diagonal ones denote the mislabeled data. The higher the diagonal values, the higher the

 Chapter Four: Result

Page | 22

classification accuracy. Amongst the 708 images, only one image is misclassified by the COVID-

CNNnet proposed model.

Fig. 4.4.: Confusion matrices of CNN Model

 Chapter Five: Conclusion and Future Work

Chapter Five

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Many countries are facing resource shortages due to the rising number of COVID-19 cases daily. To

avoid the spread of the disease, a rapid diagnosis approach that can accurately detect positive cases is

necessary. COVID-19 is usually associated with pneumonia symptoms and can be detected through

genetic and imaging tests. This study introduces a DL model architecture based on CNN deep learning

algorithm to distinguish COVID-19 cases by using chest X-ray images. The CNN model architecture

is fully automated and does not require manual feature extraction.

The developed COVID-19 recognition system can be used to assist radiologists and other medical

practitioners in making practical clinical decisions to detect COVID-19 within a limited period of time.

The deep learning technique we use in our system was Convolutional Neural Network (CNN)

algorithm that gives us an efficient automatic features extraction and online recognition of COVID19

with reasonable accuracy. The experiment, tried to identify the two classes and the overall classification

performance of the proposed method was (99.86%) that trained with 100 epochs.

 Page | 23

 Chapter Five: Conclusion and Future Work

5.2 Future Work

There are some ideas for future work that can be used to extend the project and these are:

1. Adding more classes: We can extend our dataset to identify more than two diseases.

2. Adjust the model: Adjust the structure of the CNN model to increase the performance.

3. Data scaling: Explore whether a data scale, such as standardization and normalization, can be

used to improve the performance.

4. Data Augmentation: use the data augmentation technique to enlarge the dataset and enhance

the model generalization.

5. Use another Deep learning algorithm: use other DL algorithms i.e. RNN, LSTM and Alexa

Net so on and compare their performance with proposed model.

.

Page\24

Page | 25

References

[1] Apostolopoulos, Ioannis D., and Tzani A. Mpesiana. "Covid-19:

automatic detection from x-ray images utilizing transfer learning with

convolutional neural networks." Physical and Engineering Sciences in

Medicine 43.2 (2020): 635-640.

[2] Wu, Zunyou, and Jennifer M. McGoogan. "Characteristics of and

important lessons from the coronavirus disease 2019 (COVID-19)

outbreak in China: summary of a report of 72 314 cases from the Chinese

Center for Disease Control and Prevention." Jama 323.13 (2020): 1239-

1242.

[3] World Health Organization’s, “About worldometer COVID-19 data-

Worldometer,” 2020. [Online]. Available:

https://www.worldometers.info/coronavirus/.

[4] Sethy, P. K., and S. K. Behera. "Detection of coronavirus disease

(COVID-19) based on deep features. Preprints." Preprint posted online

March 19 (2020)..

[5] Al-Karawi, Dhurgham, et al. "Ai based chest x-ray (cxr) scan texture

analysis algorithm for digital test of covid-19 patients." medRxiv (2020).

[6] Narin, Ali, Ceren Kaya, and Ziynet Pamuk. "Automatic detection of

coronavirus disease (covid-19) using x-ray images and deep convolutional

neural networks." arXiv preprint arXiv:2003.10849 (2020).

[7] Hassanien, Aboul Ella, et al. "Automatic x-ray covid-19 lung image

classification system based on multi-level thresholding and support vector

machine." medRxiv (2020).

[8] Jiang, Fang, et al. "Review of the clinical characteristics of coronavirus

disease 2019 (COVID-19)." Journal of general internal medicine 35.5

(2020): 1545-1549.

[9] Ucar, Ferhat, and Deniz Korkmaz. "COVIDiagnosis-Net: Deep Bayes-

Page | 26

SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from

X-ray images." Medical Hypotheses 140 (2020): 109761.

[10] Gaál, Gusztáv, Balázs Maga, and András Lukács. "Attention u-net based

adversarial architectures for chest x-ray lung segmentation." arXiv

preprint arXiv:2003.10304 (2020).

[11] Talo, Muhammed, et al. "Convolutional neural networks for multi-class

brain disease detection using MRI images." Computerized Medical

Imaging and Graphics 78 (2019): 101673.

[12] Esteva, Andre, et al. "Dermatologist-level classification of skin cancer

with deep neural networks." nature 542.7639 (2017): 115-118.

[13] Ozturk, Tulin, et al. "Automated detection of COVID-19 cases using deep

neural networks with X-ray images." Computers in biology and medicine

121 (2020): 103792.

[14] Wang, Linda, Zhong Qiu Lin, and Alexander Wong. "Covid-net: A

tailored deep convolutional neural network design for detection of covid-

19 cases from chest x-ray images." Scientific Reports 10.1 (2020): 1-12.

[15] Afshar, Parnian, et al. "Covid-caps: A capsule network-based framework

for identification of covid-19 cases from x-ray images." Pattern

Recognition Letters 138 (2020): 638-643.

[16] Sahinbas, Kevser, and Ferhat Ozgur Catak. "Transfer learning based

convolutional neural network for covid-19 detection with x-ray images."

Data Science for COVID-19, Computational Perspectives 24(2020): 1-24.

Page | 27

Appendix A

from google.colab import drive

drive.mount('/content/gdrive')

Mounted at /content/gdrive

#Import the required pakeges from keras.models import Sequential from

keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import

Conv2D, MaxPooling2D, ZeroPadding2D, BatchNormalization from keras.optimizers

import SGD,RMSprop, Adam from keras.utils import np_utils import time

We require this for Theano lib ONLY.
from keras import backend as K

#K.set_image_dim_ordering('th')

from numpy import * import

numpy as np import os from PIL

import Image

SKLEARN from sklearn.utils import shuffle from
sklearn.model_selection import train_test_split
import cv2 from matplotlib import pyplot as plt

x = np.load('/content/gdrive/My Drive/COVID_19/X_covid-19_2.npy')
y = np.load('/content/gdrive/My Drive/COVID_19/Y-covid-19_2.npy')
print (x.shape) print (y.shape)

(3540, 50176)

(3540,)

for i in range(9):

define subplot

 plt.subplot(330 + 1 + i) # plot
raw pixel data X =
x[i].reshape(224, 224)
plt.imshow(X, cmap=plt.cm.binary) #
show the figure plt.show();

STEP 1: split X and y into training and testing sets trainX, testX, trainY, testY

= train_test_split(x, y, test_size=0.2, random_state=7) # reshape to be

[samples][pixels][width][height] trainX = trainX.reshape(trainX.shape[0], 224, 224,

1).astype('float32') testX = testX.reshape(testX.shape[0], 224, 224,

1).astype('float32') # one hot encode outputs trainY =

np_utils.to_categorical(trainY) testY = np_utils.to_categorical(testY) num_classes =

testY.shape[1] print("Train_x:", trainX.shape) print("Test_x:", testX.shape)

print("Train_y:", trainY.shape) print("Test_y:", testY.shape) print("Number of

classes:", num_classes)

Train_x: (2832, 224, 224, 1)

Test_x: (708, 224, 224, 1)

Train_y: (2832, 2)
Test_y: (708, 2)

Number of classes: 2

#Build the CNN model def baseline_model(): # create model

model = Sequential() model.add(Conv2D(32, (7,7),

padding='same', input_shape=(224, 224, 1),

activation='relu')) model.add(Conv2D(64, (7,7), padding='same',

activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (7,7), padding='same', activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128,

(7,7), padding='same', activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.40))#

model.add(Dense(num_classes, activation='softmax'))

 # Compile model model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy']) return model

build the model model

= baseline_model()

model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 224, 224, 32) 1600

conv2d_1 (Conv2D) (None, 224, 224, 64) 100416

max_pooling2d (MaxPooling2D) (None, 112, 112, 64) 0

conv2d_2 (Conv2D) (None, 112, 112, 64) 200768

max_pooling2d_1 (MaxPooling2 (None, 56, 56, 64) 0

conv2d_3 (Conv2D) (None, 56, 56, 128) 401536

max_pooling2d_2 (MaxPooling2 (None, 28, 28, 128) 0

flatten (Flatten) (None, 100352) 0

dense (Dense) (None, 256) 25690368

dropout (Dropout) (None, 256) 0

dense_1 (Dense) (None, 2) 514
===
Total params: 26,395,202

Trainable params: 26,395,202

Non-trainable params: 0

start_time = time.clock() # Fit the model hist1 = model.fit(trainX, trainY,

validation_data=(testX, testY), epochs=10, batch_size=128,

 end_time = time.clock() pretraining_time = (end_time -
start_time) print ('Training took %f minutes' %
(pretraining_time / 60.))

Epoch 1/100
 2/23 [=>............................] - ETA: 10s - loss: 1.3552 - accuracy: 0.515
23/23 [==============================] - 25s 1s/step - loss: 0.6785 - accuracy: 0.
Epoch 2/100
23/23 [==============================] - 24s 1s/step - loss: 0.1165 - accuracy: 0.
Epoch 3/100
23/23 [==============================] - 24s 1s/step - loss: 0.0807 - accuracy: 0.
Epoch 4/100
23/23 [==============================] - 24s 1s/step - loss: 0.0791 - accuracy: 0.
Epoch 5/100
23/23 [==============================] - 24s 1s/step - loss: 0.0597 - accuracy: 0.
Epoch 6/100
23/23 [==============================] - 24s 1s/step - loss: 0.0518 - accuracy: 0.
Epoch 7/100
23/23 [==============================] - 24s 1s/step - loss: 0.0412 - accuracy: 0.
Epoch 8/100
23/23 [==============================] - 24s 1s/step - loss: 0.0587 - accuracy: 0.
Epoch 9/100
23/23 [==============================] - 24s 1s/step - loss: 0.0458 - accuracy: 0.
Epoch 10/100
23/23 [==============================] - 24s 1s/step - loss: 0.0364 - accuracy: 0.
Epoch 11/100
 9/23 [==========>...................] - ETA: 14s - loss: 0.0180 - accuracy: 0.994

KeyboardInterrupt Traceback (most recent call last)
<ipython-input-7-d59123077ed6> in <module>()

1 start_time = time.clock()
2 # Fit the model
----> 3 hist1 = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=100,
batch_size=128, verbose=1)
 4
 5 end_time = time.clock()

 13 frames

1030 except core._NotOkStatusException as e: # pylint:

disable=protected23access/23 [==============================] - 1s

50ms/step - loss: 0.0020 - accuracy: 0.9986

1031 six.raise_from(core._status_to_exception(e.code, e.message), None)

pylint: disable=protected-accessLoss: 0.00, Accuracy: 99.86%

KeyboardInterrupt:
from sklearn.metrics import confusion_matrix, classification_report

import itertools

Final evaluation for each class and compute the confusion_matrix

y_pred = model.predict_classes(testX)

p=model.predict_proba(testX) # to predict probability

 target_names = ['COVID-19', 'NON-COVID-

19']
print (classification_report(np.argmax(testY,axis=1), y_pred,target_names=target_names))

confusion_matrix = confusion_matrix(np.argmax(testY,axis=1), y_pred) WARNING:tensorflow:From

<ipython-input-10-c8d2d1417a5b>:4: Sequential.predict_classes (f

Instructions for updating:

Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does

multiWARNING:tensorflow:From <ipython-input-10-c8d2d1417a5b>:5: Sequential.predict_proba

(fro

Instructions for updating:

Please use `model.predict()` instead.

precision recall f1-score support

 COVID-19 1.00 1.00 1.00 361 NON-COVID-19

1.00 1.00 1.00 347

 accuracy 1.00 708

macro avg 1.00 1.00 1.00 708 weighted

avg 1.00 1.00 1.00 708

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in
Final evaluation of the model_numpy(self) loss, accuracy =

model.evaluate(testX, testY) 1027 def _numpy(self):

print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss,

accuracy*100)) 1028 try:

 -> 1029 return self._numpy_internal()

target_names1 = ['COVID-19', 'NON-COVID-19']

plt.imshow(confusion_matrix,

interpolation='nearest') plt.title('Confusion

matrix') plt.colorbar() tick_marks =

np.arange(len(target_names)) plt.xticks(tick_marks,

target_names, rotation=45) plt.yticks(tick_marks,

target_names1, rotation=45) thresh =

confusion_matrix.max() / 2.

for i, j in itertools.product(range(confusion_matrix.shape[0]), range(confusion_matrix.shape[
plt.text(j, i, confusion_matrix[i, j], horizontalalignment="center",
color="black" if confusion_matrix[i, j] > thresh else "white") plt.tight_layout()
plt.title('Confusion Matrix', fontsize='16') plt.ylabel('True label', fontsize='16')
plt.xlabel('Predicted label', fontsize='16') plt.show()

print(hist1.history.keys()) #

summarize history for accuracy

#plt.style.use('seaborn-notebook')

#plt.subplot(2, 1, 1)

plt.plot(hist1.history['accuracy'], color='red')

plt.plot(hist1.history['val_accuracy'])

plt.title('Model Accuracy') plt.ylabel('Accuracy

(%)') plt.xlabel('Epoch') plt.legend(['Traning',

'Test'], loc='upper left') plt.grid(True)

plt.show()

summarize history for loss #plt.subplot(2,

1, 2) plt.style.use('seaborn-notebook')

plt.plot(hist1.history['loss'],

color='orange')

#plt.plot(history.history['val_loss'])
plt.title('Model Traning Loss')
plt.ylabel('Traning Error Rate (%)')
plt.xlabel('Epoch')
plt.legend(['Train'], loc='upper left')
plt.grid(True) plt.show()

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

