2001

University of Diyala - College of Science
Computer Science Department

Drowsiness Detection System

This research was presented to the Council of the College of Science -
University of Diyala - Department of Computing as part of the

requirements to get a bachelor's degree in Computer science

By:
Aisha Ahmed Ali
Nadya Ali Sultan

Under the Supervision of:

Dr. Bashar Talib AL-Nuaimi

1442 AH. 2021 A.D.



ABSTRUCT
In the last years, the traffic accidents study is become important because
they produce several died and hurt around the world. To help in reducing
this fatality, in this project, a Drowsiness Detection System for automatic
driver’s drowsiness detection based on visual information and Machine
Learning is presented. This system works on several stages to be fully
automatic. In addition, the aim of this algorithm is to locate and to track the
face and the eyes to compute a drowsiness index. Examples of different
driver’s images taken over real vehicle are shown to validate the algorithm

that works in real time.



SUPERVISOR CERTIFICATION

| certify that the preparation of this project entitled

Drowsiness Detection System

Prepared By
Aisha Ahmed Ali

Nadya Ali Sultan

was made under my supervision in the Department of Computer
Science/College of Science/University of Diyala and it is part of the

requirements for obtaining a Bachelor's degree in Computer Science

Signature
Name :

Date :



ARV-Y

(@T)Claﬂ\ G5 d e G gl Y
((2) Boball cdus lage Sgaall (qinle (o b g

sbd (3 Graadly JLoyY eedoi> e Oghilibg Jobilung Gkl J O e JI
(Jds>)

(89,0 &T ) 39989 33l Hol Jadin J cSualy @oylall bl e oy J
JoYI G5l Jlg

(Slanlond] pole ad 3Ll apazmy sl .3
opb Jic dola sl e S

alilu op> pouall Olgadb U gl
slaladl sl g5 dim-law ,glolo

9)yledl d>loww dl>y09



SRSy S

B (3585" Josid! S 3 S .y Jandl dassy fhe pasl I padll sl <0l Sl
 pedas)l i) B ... 76 &T Cwwgy By "Rele ol (63

Lo lsus o OB 05585 Bgyan (S| pue oe"i(oluy ke dlll o) il Jgusy JlBs
(29915 gl olgy ) e "o}n&';lés‘oﬁibjgodﬂ}ca@dg@ﬁjé&

Caoedl 138 ] Juan 3 S 339 ¢ (awdey ¢ qez9 00 IS I 0Lyl Uoszg ¢ Ol
¢ W‘&bﬁ‘_ﬁ@g‘; ooujlwcg}pjcégtijc ﬁﬁé&ﬂ\éﬂéﬂd)@b .
o U O30 Al aylad (355 1 ¢ pladl yoy> dilgazgs (§ g Ul

¢ dezrgilly ¢« guall I Sdwls ¢ d3yaally ¢ lallb Jal e U OBpally Sl Jesl LS
ped ¢ polall 4 SHL jasly ¢ Jbs dasls § Niaie Folid] aladl Zpall 3 i
Al ol ¢ Boball dilgedy Gl o S Ul ,SadL 42651 WS, lgde raslally cobwld!
dualsea|

olau (ilee & IS Jaze OF Uy 56 dll oyo (sl Tasazr 02,84



Chapter one

1.1

1.2

13

1.4
Chapter two

2.1

2.2

2.3

2.4

2.5

2.6
Chapter Three

3.1

3.2

3.3
Chapter four

4.1

4.2

Table of Contents

Subject
INTRODUCTION

Introduction

Problem Statement
Project Objective
Project Benefit
Literature Review
Review of Related Work
Proposed System
OpenCV

CNN Model

Model Architecture
Prerequisites

System Implementation
Project Data Set

Project Implementation

Project Example

Conclusions and suggestions

Conclusions
Suggestions

References

page

w NN N

O N N o o1 b~

10
10
13

16
16
17



List of Figures

Figure Title Page
2.1 Scheme of the system 5
3.1 Closed Eye Detection 14
3.2 Open Eyes Detection 14

3.3 Sleep Alert 15



CHPTER 1

INTRODUCTION



CHAPTER ONE INTRODUCTION

1.1 Introduction

Driver drowsiness is one of the leading causes of motor vehicle crashes. This was
confirmed by a study [1] conducted by the AAA Foundation for Traffic Safety,
which showed that 23.5% of all automobile crashes recorded in the United States
in 2015 were sleep-related: 16.5% for fatal crashes and 7% for non-fatal crashes.
Essentially, this report implied that over 5,000 Americans lost their lives as a

result of sleep-related vehicular crashes.

The development of drowsiness detection technologies is both an industrial and
academic challenge. In the automotive industry, VVolvo developed the Driver Alert
Control which warns drivers suspected of drowsy driving by using a vehicle-
mounted camera connected to its lane departure warning system (LDWS).
Following a similar vein, an Attention Assist System has been developed and
introduced by Mercedes-Benz that collects data drawn from a driver's driving
patterns incessantly ascertains if the obtained information correlates with the

steering movement and the driving circumstance at hand.

Notably, the use of these safety systems which detect drowsiness is not
widespread and is uncommon among drivers because they are usually available in
luxury vehicles. An increased embedding and connecting of smart devices

equipped with sensors and mobile operating systems like Android, which has the

1



CHAPTER ONE INTRODUCTION

largest installed operating system in cars, was shown by surveys in 2015 [2]. In
addition, machine learning has made groundbreaking advances in recent years,
especially in the area of deep learning. Thus, the use of these new technologies
and methodologies can be an effective way to not only increase the efficiencies of
the existing real-time driver drowsiness detection system but also provide a tool

that can be widely used by drivers.

1.2 Problem Statement

Road crashes and related forms of accidents are a common cause of injury and
death among the human population. According to 2015 data from the World
Health Organization, road traffic injuries resulted in approximately 1.25 million
deaths worldwide, i.e. approximately every 25 seconds an individual will
experience a fatal crash. In this project, a novel approach towards real-time
drowsiness detection system is proposed. This approach is based on a machine

learning method that can be implemented with python with high accuracy.

1.3 Project Objective

The objective of this project is to bulit of a system capable of detecting drowsiness
in the driver while driving and alerting him to prevent traffic accidents that may

occur due to drowsiness of the driver.



CHAPTER ONE INTRODUCTION

1.4 Project Benefit

The benefit of this study is to provide a system to detect driver drowsiness to

easily reduce catastrophic accidents or something else.



CHPTER 2

LITERATURE REVIEW



CHAPTER TWO LITERATURE REVIEW

2.1 Review of Related Work

To analyze driver’s drowsiness several systems have been built. They usually
require simplifying the problem to work partially or under special environments, for
example, Ji et al. in [3] and [4] has presented a detection drowsiness system based
on infrared light illumination and stereo vision. This system localizes the eye
position using image differences based on the bright pupil effect. Afterwards, this
system computes the blind eyelid frequency and eye gaze to build two drowsiness
indices: PERCLOS and AECS. Bergasa et al. [5] also has developed a non-intrusive
system using infrared light illumination, this system computes driver vigilance level
using a finite state automata with six eye states that computes several indices, among
them, PERCLOQOS; on the other hand, the system is able to detect inattention through
face pose analysis. Another work using infrared illumination is presented by Grace
et al. [7] for measuring slow eyelid closure. D’Orazio et al. in [6] has proposed an
eye detection algorithm that searches the eyes on the whole image assuming that the
iris is always darker than the sclera and based on circle Hough transform and
geometrical constrains the eyes candidates are located, next, they are passed to a
neural network that classify between eyes and non-eyes. This system is able to
classify the eyes between open or closed state. The mains limitations of this
algorithm are: it is applicable when the eyes are only visible in the image, and it is

not robust at changing illumination.



CHAPTER TWO LITERATURE REVIEW

2.2 Proposed System

In this Python project, we have built a drowsiness detection system that you
can implement in numerous ways. We used OpenCV to detect faces and eyes using

a hear cascade classifier and then we used a CNN model to predict the status.

Capture |
Initialize image
Face
detection
|
* Ho
Success?
lYes Lcthvate
Ha alarm
Eye, —» Success?
Tracking detection Ho
Tes Yes
l Diyonwrsiness?
Eye A

state

Figure 2.1 scheme of the system

To localize the face, this system uses OpenCV which is a machine learning approach
for visual object detection. It uses three important aspects to make an efficient object
detector based on the integral image, AdaBoost technique and cascade classifier [8].
Each one of these elements is important to process the images efficiently and near
real-time with 90% of correct detection. A further important aspect of this method
is its robustness under changing light conditions. However, in spite of the
abovementioned, its principal disadvantage is that it cannot extrapolate and does not

work appropriately when the face is not in front of the camera axis. Such would be



CHAPTER TWO LITERATURE REVIEW

the case when the driver moves his/her head; however, this shortcoming will be

analyzed later on.

2.3 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of machine
perception in the commercial products. Being a BSD-licensed product, OpenCV

makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera movements, track
moving objects, extract 3D models of objects, produce 3D point clouds from stereo
cameras, stitch images together to produce a high resolution image of an entire
scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers
to overlay it with augmented reality, etc. OpenCV has more than 47 thousand people
of user community and estimated number of downloads exceeding 18 million. The
library is used extensively in companies, research groups and by governmental

bodies.



CHAPTER TWO LITERATURE REVIEW

2.4 CNN Model

Convolutional Neural Networks (CNN) are typically used to analyze image data and
map images to output variables. However, we decided to build a 1-D CNN and send
in numerical features as sequential input data to try and understand the spatial
relationship between each feature for the two states. Our CNN model has 5 layers
including 1 convolutional layer, 1 flatten later, 2 fully connected dense layers, and 1
dropout layer before the output layer. The flatten layer flattens the output from the
convolutional layer and makes it linear before passing it into the first dense layer.
The dropout layer randomly drops 20% of the output nodes from the second dense
layer in order to prevent our model from overfitting to the training data. The final

dense layer has a single output node that outputs O for alert and 1 for drowsy.
2.5 Model Architecture

The model we used is built with Keras using Convolutional Neural Networks
(CNN). A convolutional neural network is a special type of deep neural network
which performs extremely well for image classification purposes. A CNN basically
consists of an input layer, an output layer and a hidden layer which can have multiple

numbers of layers. A convolution operation is performed on these layers using a

filter that performs 2D matrix multiplication on the layer and filter.

The CNN model architecture consists of the following layers:

e Convolutional layer; 32 nodes, kernel size 3



CHAPTER TWO LITERATURE REVIEW

e Convolutional layer; 32 nodes, kernel size 3
e Convolutional layer; 64 nodes, kernel size 3

e Fully connected layer; 128 nodes

The final layer is also a fully connected layer with 2 nodes. In all the layers, a Relu

activation function is used except the output layer in which we used SoftMax.
2.6 Prerequisites

The requirement for this Python project is a webcam through which we will capture
images. You need to have Python (3.6 version recommended) installed on your

system.
2.6.1 Python (programming language)

We will use Python to build the project. Python is an interpreted high-level general-
purpose programming language. Python's design philosophy emphasizes code
readability with its notable use of significant indentation. Its language constructs as
well as its object-oriented approach aim to help programmers write clear, logical

code for small and large-scale projects[9] .

Python is dynamically-typed and garbage-collected. It supports multiple
programming paradigms, including structured (particularly, procedural), object-
oriented and functional programming. Python is often described as a "batteries

included” language due to its comprehensive standard library[9] .

then using pip, you can install the necessary packages.



CHAPTER TWO LITERATURE REVIEW
1. OpenCV - pip install opencv-python (face and eye detection).
2. TensorFlow — pip install tensorflow (keras uses TensorFlow as backend).
3. Keras — pip install keras (to build our classification model).

4. Pygame — pip install pygame (to play alarm sound).



CHPTER 3

SYSTEM IMPLEMENTATION



CHPTER THREE PROJECT IMPLEMENTATION

3.1 Project Data Set

The dataset used for this model is created by us. To create the dataset, we wrote
a script that captures eyes from a camera and stores in our local disk. We
separated them into their respective labels ‘Open’ or ‘Closed’. The data was
manually cleaned by removing the unwanted images which were not necessary
for building the model. The data comprises around 7000 images of people’s eyes
under different lighting conditions. After training the model on our dataset, we

have attached the final weights and model architecture file “models/cnnCat2.h5”.

Now, you can use this model to classify if a person’s eye is open or closed.

3.2 Project Implementation

In our project, using the Python language, we will import the necessary library in

the first step of the project.

#Importing the libraries

import cv2

from keras.models import load_model
import numpy as np

from pygame import mixer

Let’s now Explain how our algorithm works step by step.

10



CHPTER THREE PROJECT IMPLEMENTATION

Step 1 — Take Image as Input from a Camera

With a webcam, we will take images as input. So to access the webcam,
we made an infinite loop that will capture each frame. We use the method
provided by OpenCV, cv2.VideoCapture(0) to access the camera and set the
capture object (cap). cap.read() will read each frame and we store the image in a

frame variable.

Step 2 — Detect Face in the Image and Create a Region of Interest (ROI)

To detect the face in the image, we need to first convert the image into
grayscale as the OpenCV algorithm for object detection takes gray images in the
input. We don’t need color information to detect the objects. We will be using
haar cascade classifier to detect faces. This line is used to set our classifier face
= cv2.CascadeClassifier(‘ path to our haar cascade xml file’). Then we
perform the detection using faces = face.detectMultiScale(gray). It returns an
array of detections with X,y coordinates, and height, the width of the boundary
box of the object. Now we can iterate over the faces and draw boundary boxes

for each face.

for (x,y,w,h) in faces:

cv2.rectangle(frame, (x,y), (x+w, y+h), (100,100,100), 1 )

11



CHPTER THREE PROJECT IMPLEMENTATION

Step 3 — Detect the eyes from ROI and feed it to the classifier

The same procedure to detect faces is used to detect eyes. First, we set the
cascade classifier for eyes in leye and reye respectively then detect the eyes
using left_eye = leye.detectMultiScale(gray). Now we need to extract only the
eyes data from the full image. This can be achieved by extracting the boundary
box of the eye and then we can pull out the eye image from the frame with this

code.

1 eye = frame[ y : y+h, x : x+w ]

|_eye only contains the image data of the eye. This will be fed into our CNN
classifier which will predict if eyes are open or closed. Similarly, we will be

extracting the right eye into r_eye.

Step 4 — Classifier will Categorize whether Eyes are Open or Closed

We are using CNN classifier for predicting the eye status. To feed our
Image into the model, we need to perform certain operations because the model
needs the correct dimensions to start with. First, we convert the color image into
grayscale using r_eye = cv2.cvtColor(r_eye, cv2.COLOR_BGR2GRAY).
Then, we resize the image to 24*24 pixels as our model was trained on 24*24
pixel images cv2.resize(r_eye, (24,24)). We normalize our data for better

convergence r_eye = r_eye/255 (All values will be between 0-1). Expand the

12



CHPTER THREE PROJECT IMPLEMENTATION

dimensions to feed into our classifier. We loaded our model using model =

load_model(‘models/cnnCat2.h5”) . Now we predict each eye with our model

Ipred = model.predict_classes(l_eye). If the value of Ipred[0] = 1, it states that

eyes are open, if value of Ipred[0] = O then, it states that eyes are closed.

Step 5 — Calculate Score to Check whether Person is Drowsy

The score is basically a value we will use to determine how long the person
has closed his eyes. So if both eyes are closed, we will keep on increasing score
and when eyes are open, we decrease the score. We are drawing the result on the
screen using cv2.putText() function which will display real time status of the

person.

cv2.putText(frame, “Open”, (10, height-20), font, 1, (255,255,255), 1,
Ccv2.LINE_AA )

A threshold is defined for example if score becomes greater than 10 that means
the person’s eyes are closed for a long period of time. This is when we beep the

alarm using sound.play().
3.3 Project Example
Let’s start our project and see the working of our project. It may take a few

seconds to open the webcam and start detection. The following figures show the

13



CHPTER THREE PROJECT IMPLEMENTATION

work of the project when opening and closing the eyes and when alerting the

driver.

B | frame = ] X

Closed Score:3

Score:0

Figure 3.2 Open Eyes Detection

14



CHPTER THREE PROJECT IMPLEMENTATION

B | frame - m} X

Closed Score:23

Figure 3.3 Sleep Alert

15



CHPTER 4

CONCLUSION AND SUGGESTIONS



Chapter Four Conclusions and Suggestions

4.1 Conclusions

Drowsiness detection is a safety technology that can prevent accidents that are
caused by drivers who fell asleep while driving. So we built of a system capable of
detecting drowsiness in the driver while driving and alerting him to prevent traffic

accidents that may occur due to drowsiness of the driver.
4.2 Suggestions

Moving forward, there are a few things we can do to further improve our
results and fine-tune the models. First, we need to incorporate distance between the
facial landmarks to account forany movement by the subject in the video.
Realistically the participants will not be static on the screen and we believe sudden
movements by the participant may signal drowsiness or waking up from micro-
sleep. Second, we want to update parameters with our more complex models (NNs,

ensembles, etc.) in order to achieve better results..

16



References

[1] Drowsy Driving NHTSA reports. (2018, January 08). Retrieved from

https://www.nhtsa.gov/risky-driving/drowsy-driving

[2] Cornez T, Cornez R. Android Programming Concepts. Jones & Bartlett

Publishers; 2015.

[3] Q. Ji, Z. Zhu y P. Lan. : Real Time Nonintrusive Monitoring and Prediction of

Driver Fatigue, IEEE Transactions on Vehicular Technology, Vol. 53, N° 4 (2004).

[4] Ji Q. and Yang. X.: Real-Time Eye, Gaze, and Face Pose Tracking for
Monitoring Driver Vigilance. Real Time Imaging, Nor. 8, Pg. 357- 377, Elsevier

Science Ltd, (2002).

[5] Bergasa L., Nuevo J., Sotelo M. and Vazquez M.: Real Time System for

Monitoring Driver Vigilance. IEEE Intelligent Vehicles Symposium (2004).

[6] D’Orazio T., Leo M. and Distante A.: Eye Detection in Faces Images Vigilante
System. IEEE Intelligent Vehicles Symposium University of Parma, Italy June, 14-

17 (2004).

[7] Grace R.: Drowsy Driver Monitor and Warning System. International Driving
Symposium on Human Factors in Driver Assessment, Training and Vehicle Design

(2001)

[8] Viola P. and Jones M.: Rapid Object Detection using a Boosted Cascade of

Simple Features. Accepted Conference on Computer Vision and Pattern

15



Recognition(2001).
[9] Kuhlman, Dave. "A Python Book: Beginning Python, Advanced Python, and

Python Exercises". Section 1.1. Archived from the original (PDF) on 23 June 2012.

16



(il 1A ))

a s gall £ g pdiall 138 dae) by agdl
uladl) LSS oS

-r OUal) S8 e axall g
gism\Ml:-

Olabu Ao 40l

R A 3:.414[33&1\ S [ gudal) asls M@@\ﬂ\ SIEN PPV 3
Qaulal) agle (alaii) (A g ) Sl Balgeds Jd lulhala (e ¢ 52

: dalal) 45 sl



AadAll

a5 Cge (N o5 LY aga s all Canlga Al ja canal <5 a1 @l gl b
¢ &l 128 bl gl eda (pe aall i acluall Allall s (alAEY) (e 2aall
oty Gl s e Al K5 iy uladll e KT GUai A o
eI W S dal e sae e allail) 13 Jary V) aledll 5 430 pall Cila sleall
Glual Griall g da sl s 2aad o8 daaj)lsall s2a (e Caagll ¢ @lly ) diLal
Liis A8 50 o Lehlal o il dilida | geal Al (e alyodadll b

Lol gl 8 Jaad Al daa ) sAd) dsia (e (383



Pl 48 — Jbd dasl>
Oleaslxll pole gud

aladl) LGS alas

e Jgpasdl Ooldlaze (e 53268 Olaolol oud — JUd dal — aglall 44 yudoeo JI addio Cuws
Qo pgle (§ (g9l S Balgd

CMall slus)

le‘— e dadle
Olale e ol

Eoedl de 5

o> Ao Hlan 5.0

02021 »1442



