
12/19/2021

1

1

Data Structure
Lecture 8: Heaps, Searching

Instructor

Ali A. Al-Ani

Department of Computer Science

College of Science

2

Department of Computer Science

College of Science

Heaps

• A Heap is a special Tree-based data structure in which the tree is a complete binary tree. A heap is a

binary tree T that stores a collection of elements with following properties.

1. It s a complete tree (All levels are completely filled except possibly the last level and the last level

has all keys as left as possible). This property of Binary Heap makes them suitable to be stored in

an array.

2. A Binary Heap is either Min Heap or Max Heap.

A. Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys

present at all of it"s children. The same property must be recursively true for all sub-trees in

that Binary Tree.

B. Min-Heap: In a Min-Heap the key present at the root node must be minimum among the keys

present at all of it"s children. The same property must be recursively true for all sub-trees in

that Binary Tree..

12/19/2021

2

3

Department of Computer Science

College of Science

Heaps

• Min-Heap

423126

10

14 19

27

44 35 33

• Max-Heap

193133

44

42 35

27

10 26 14

4

Department of Computer Science

College of Science

Heaps: Construction Algorithm

• Max Heap Construction Algorithm: in Max Heap construction algorithm, we expect the value of the

parent node to be greater than that of the child node. We are going to derive an algorithm for max

heap by inserting one element at a time. At any point of time, heap must maintain its property.

1. Create a new node at the end of heap.

2. Assign new value to the node.

3. Compare the value of this child node with its parent.

4. If value of parent is less than child, then swap them.

5. Repeat step 3 & 4 until Heap property holds.

12/19/2021

3

5

Department of Computer Science

College of Science

• Ex: Using the following data items to construct the max-heap tree. 35, 33, 42, 10, 14, 19, 27, 44, 26

35

35

33

35

33 42

191410

42

33 35

27

42

33 35

191410

42

33 35

27

44

Heaps: Construction Algorithm

6

Department of Computer Science

College of Science

• Ex: Using the following data items to construct the max-heap tree. 35, 33, 42, 10, 14, 19, 27, 44, 26

10

191444

42

33 35

27

10

191433

42

44 35

27

10

191433

44

42 35

27

26

Heaps: Construction Algorithm

12/19/2021

4

7

Department of Computer Science

College of Science

Insertion Into A Heap

• Elements are inserted into a heap next to its right-most leaf at the bottom level. Then the heap property

is restored by percolating the new element up the tree until it is no longer 'older((i.e., its key is

greater) than its parent. On each iteration, the child is swapped with its parent.

• The following example shows how the key 75 would be inserted into the heap. The element 75 is added

to the tree as a new last leaf. Then it is swapped with its parent element 33 because 75 > 33. Then it is

swapped with its parent element 66 because 75 > 66. Now the heap property has been restored because

the new element 75 is less than its parent and greater than its children.

8

Department of Computer Science

College of Science

30

554433

88

66 77

75

30

554433

88

66 77

75

75

30

554475

88

66 77

75

33

30

554466

88

75 77

75

33

Insertion Into A Heap

12/19/2021

5

9

Department of Computer Science

College of Science

Heaps: Deletion Algorithm

• Max Heap Deletion Algorithm: Deletion in Max (or Min) Heap always happens at the root to remove

the Maximum (or minimum) value, and the steps are follow:

1. Remove root node.

2. Move the last element of last level to root.

3. Compare the value of this child node with its parent.

4. If value of parent is less than child, then swap them.

5. Repeat step 3 & 4 until Heap property holds.

10

Department of Computer Science

College of Science

10

191433

44

42 35

27

26

10

191433

26

42 35

27

10

191433

42

26 35

27

10

191426

42

33 35

27

Heaps: Deletion Algorithm

12/19/2021

6

11

Department of Computer Science

College of Science

Representing Heaps as Arrays

• Linear representation of a Heaps

utilizes one-dimensional array of size

2h+1 - 1. Consider the following Heap. To

represent this Heap, we need an array of

size 22+1 - 1 = 7, The Heap is represented

as follows A[7].

191433

44

42 35

A[0] 44

A[1] 42

A[2] 35

A[3] 33

A[4] 14

A[5] 19

A[6] -

i

2i + 1 2i + 2

12

Department of Computer Science

College of Science

Heaps: Applications

• The heap data structure has many applications.

1. To quickly find the smallest and largest element from a collection of items or array.

2. Heap sort: One of the best sorting methods being in-place and with no quadratic worst-case

scenarios.

3. In the implementation of Priority queue in graph algorithms like Dijkstra's algorithm and Prim's

algorithm. priority queue is an abstract data type which is like a regular queue or stack data structure, but where

additionally each element has a "priority" associated with it. In a priority queue, an element with high priority is

served before an element with low priority.

12/19/2021

7

13

Department of Computer Science

College of Science

Heap Sort

• Heap Sort is a popular and efficient sorting algorithm in computer programming. Heap sort is a

comparison based sorting technique based on Heap data structure, And the steps of sorting as follow:

1. Build a max-heap from the array

2. Swap the root (the maximum element) with the last element in the array

3. @DiscardA this last node by decreasing the heap size

4. Call Max- Heapify on the new root

5. Repeat this process until only one node remains

14

Department of Computer Science

College of Science

Ex: Given an array of 6 elements: 7, 4, 3, 1, 2 sort it in ascending order using heap sort. Consider the

values of the elements as priorities and build the heap tree.

21

7

4 3

A[0] 7

A[1] 4

A[2] 3

A[3] 1

A[4] 2

Heap Sort

A[0]

A[1]

A[2]

A[3] 4

A[4] 771

2

4 3

71

4

2 3

74

1

2 3

1 2 3 4

12/19/2021

8

15

Department of Computer Science

College of Science

Ex: Given an array of 6 elements: 7, 4, 3, 1, 2 sort it in ascending order using heap sort. Consider the

values of the elements as priorities and build the heap tree.

Heap Sort

A[0] 1

A[1] 2

A[2] 3

A[3] 4

A[4] 774

1

2 3

74

1

2 3

74

1

2 3

74

1

2 3

5 6 7 8

16

Department of Computer Science

College of Science

Searching

• Searching is the process of finding a target element among a group of items (the search pool), or

determining that it isn't there. Here"s the problem statement:

• Given a value X, return the index of X in the array, if such X exists. Otherwise, return

NOT_FOUND (-1). Assume there are no duplicate entries in the array.

• The number of comparisons the algorithms make to analyze their performance. The ideal searching

algorithm will make the least possible number of comparisons to locate the desired data. Two separate

performance analyses are normally done, one for successful search and another for unsuccessful

search.

12/19/2021

9

17

Department of Computer Science

College of Science

Linear Searching

• Linear Search: Linear search is a very simple search algorithm. In this type of search, a sequential

search is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data collection.

• Linear search easy to understand, but not very efficient. Consider the following example for successful

and unsuccessful linear search, and for both the worst case is O(n)

• Ex: search (45) Unsuccessful Search, search (96) successful Search. Index (9)

0 1 2 3 4 5 6 7 8 9

23 17 5 90 11 44 38 84 77 96

18

Department of Computer Science

College of Science

Binary Searching

• Binary search is a fast search algorithm and more efficient than a linear search. This search algorithm

works on the principle of divide and conquer. For this algorithm to work properly, the data collection

should be in the sorted form.

• A binary search eliminates large parts of the search elements with each comparison. Instead of starting

the search at one end, we begin in the middle. If the target isn't found, we know that if it is in the pool at

all, it is in one half or the other. We can then jump to the middle of that half, and continue similarly, and

for successful or unsuccessful binary search the worst case of binary search is O(log
2

n).

12/19/2021

10

19

Department of Computer Science

College of Science

• Ex: Consider the following sorted array using the binary searching algorithm to find the key (44).

• The basic idea is straightforward. First search the value in the middle position. If the key (44) is less

than this value, then search the middle of the left half next. If key (44) is greater than this value, then

search the middle of the right half next. Continue in this manner until we find the key .

Binary Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

20

Department of Computer Science

College of Science

• The algorithm maintains two parameters, low and high. Initially, low = 0 and high = nD1. First, we

shall determine half of the array by using this formula. mid = [low + high] / 2. Then we consider three

cases:

1. If key(44) == mid.key(), then we have found the entry we were looking for, and the search

terminates successfully returning the mid.key

2. If key(44) < mid.key(), then we recur on the first half of the vector, that is, on the range of indices

from low to midD1

3. If key(44) > mid.key(), we recur on the range of indices from mid+1 to high

Binary Searching

12/19/2021

11

21

Department of Computer Science

College of Science

• Mid = [low + high] / 2 mid = [0 + 8] / 2 mid = 4.

• The key(44) > mid.key(), Then we recur on the range of indices from mid+1 to high (4+1) to 8

Binary Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

low High

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

low mid High

22

Department of Computer Science

College of Science

• Mid = [low + high] / 2 mid = [5 + 8] / 2 mid = 6.

• The key(44) < mid.key(), Then we recur on the range of indices from low to high(mid G 1) 5 to (6-1)

Binary Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

low High

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

low mid High

12/19/2021

12

23

Department of Computer Science

College of Science

• Mid = [low + high] / 2 mid = [5 + 5] / 2 mid = 5.

• The key(44) == mid.key(), we find the key at position 5 Successful Search

Binary Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

Low, high

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

Low, high,

Mid

24

Department of Computer Science

College of Science

The End

