

UNIVERSITY OF DIYALA

Tree

- The characteristic features of the tree are that each element may have several successors (called its "children") and every element except one (called the "root") has a unique predecessor (called its "parent").
- A tree is usually visualized by placing elements inside ovals or rectangles, and by drawing the connections between parents and children with straight lines.

Department of Computer Science College of Science

UNIVERSITY OF DIYALA

Binary Tree: Properties

- Binary trees have several interesting properties dealing with relationships between their **heights** and **number of nodes**. In a binary tree, **level 0 has one node (root), level 1 has, two nodes** (the children of the root), **level 2 has, at most, four nodes, and so on.**
- In general, level L has, at most, (2^L) nodes. We can see that the maximum number of nodes on the levels of a binary tree grows exponentially as we go down the tree. From this simple observation, we can derive the following properties relating the **height of a binary T** to its number of nodes.
- No. of Node in the Binary Tree $(T) = (2^{(h+1)} 1)$
- where : h: height of a binary Tree (T)

R	UNIVERSIT	Y OF DIYALA							
Binary Tree: Representation									
1. Linear representation of a binary tree utilizes one-dimensional									
	array of size $2^{h+1} - 1$. Consider the following tree.								
 To represent this tree, we need an array of size 2²⁺¹ - 1 = 7, The tree is represented as follows A[7]. 									
	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]		
	A	В	С	-	D	-	E		
_								Department of Computer Science College of Science	

UNIVERSITY OF DIVALA

Binary Tree: Applications

- 1. Representation Arithmetic Expressions:
- The Postorder traversal of a binary tree can be used to solve the expression evaluation problem. In this problem, we are given an arithmetic-expression tree, that is, a binary tree where :
 - 1. If a node is external, then its value is that of its variable or constant.
 - 2. If a node is internal, then its value is defined by applying its operation to the values of its children.
- An arithmetic expression can be represented by a tree whose external nodes are associated with *variables* or *constants*, and whose internal nodes are associated with one of the *operators*.

Department of Computer Science College of Science

UNIVERSITY OF DIYALA

BST: Delete

- First, find the item; then, delete it, but the Binary search tree property must be preserved!! We need to consider three different cases:
 - 1. Deleting a leaf : Delete it immediately
 - 2. Deleting a node with only one child: Adjust a pointer from the parent to bypass that node

 Deleting a node with two children: replace the value of that node with the minimum element at the right sub tree. delete the minimum element has either no child or one child. So invoke case 1 or 2.

> Department of Computer Science College of Science

