

R	UNIVERSITY OF DIYALA
	Introduction
.	Representing information is fundamental to computer science. The primary purpose of most
	as possible.
•	For this reason, the study of data structures and the algorithms that manipulate them is at the heart of
	computer science. And that is what this subject is about helping us to understand how to structure
	information to support efficient processing.
	Department of Computer Science College of Science

	IVERSITY OF DIYALA
	How to choose the suitable data structure
	• Analyze your problem to determine the basic operations that must be supported. Examples of basic operations include inserting a data item into the data structure, deleting a data item from the data structure, and finding a specified data item.
2.	• Data size and the required memory.
3.	• The dynamic nature of the data.
4.	• The required time to obtain any data element from the data structure.
5.	• The programming approach and the algorithm that will be used to manipulate these data.
	Department of Computer Science College of Science

- An array is a collection of elements of the same type, called its base type; it is therefore called a homogeneous structure.
- The array is a random-access structure, because all components can be selected at random and are equally quickly accessible. Array is very useful data structure provided in programming language.

However, it has at least two limitations:

- 1. Its size has to be known at compilation time.
- 2. The data in the array are separated in computer memory by the same distance, which means that inserting an item inside the array requires shifting other data in this array.

One – Dimensional Arrays

- The address of the first location is called the **base address** of the array and is denoted by base (**BA**) and the rest of the array elements come after this address.
- Computer does not need to keep track of the address of every array element, but need to track only the address of the first element of the array **Base Address (BA)** and to reach to any array element and the compiler use the following formula to do so.

$Loc(N[I]) = BA + (I) \times Size$

• Loc N[I] : The location of the element I, BA: Fixed base address, Size: A fixed constant, is also known as size of the data type.

```
Department of Computer Science
College of Science
```

UNIVERSITY OF DIVALA						
One – Dimensional Arrays: Example						
• Example : Consider an one dimension array (N) with size 10 and the base address equal (3002) and						
each element of the array occupy 1 byte. find the ac	dress the elemen	t number six.				
• $Loc(N[I]) = BA + (I) \times Size$	Logical address	Physical address	Memory			
• then, Loc $(N[5]) = 3002 + (5) \times 1$	N[0]	3002				
• Loc (N [5]) =3007.	N[1]	3003				
	N[2]	3004				
	N[3]	3005				
The Physical Representation Of Array In Memory	N[4]	3006				
	N[5]	3007				
	:	:				
	N[9]	3011				
	Programmer view	Compiler view				
		Depa	artment of Computer Science College of Science			

- The array N will be represented in the memory by block of (3×5) sequential memory location. Programming language will store array N either :
 - 1. Column by Column: called (Column-Major Order) Ex: Fortran, Matlab.
 - 2. Row by Row: called (Row-Major Order) Ex: C, C++, Java.

UNIVERSITY OF DIYALA

Two – Dimensional Arrays

By Column N[2][3]. {(1,5,3), (4,8,6)}

	Column 0		Column 1		Column 2	
value	1	4	5	8	3	6
address	100	101	102	103	104	105

• By Column N[2][3]. {(1,5,3), (4,8,6)}

	Row 0				Row 1	
value	1	5	3	4	8	6
address	100	101	102	103	104	105

UNIVERSITY OF DIYALA

Column-Major Order : Example

- **Example:** Consider a two dimension array (N) with size (m=3 × n= 5) and the base address equal (300) and each element of the array occupy 1 byte. find the address the element N[1][2].Suppose the programming store 2D using Column-Major.
 - $Loc(N[I]]J) = BA + (m \times J + I) \times Size$
 - Loc $(N[1][2]) = 300 + (3 \times 2 + 1) \times 1$
 - Loc(N[I][J]) = 307

	L.A.	P.A.	Memory
Call	N[0][0]	300	
COLO	:	:	
Cal 1	N[0][1]	303	
COLI	:	:	
	N[0][2]	306	
Col 2	N[1][2]	307	
	N[2][2]	308	
Cal 3	N[0][3]		
013	:	:	
Cal 4	N[0][4]		
C014	:	:	

UNIVERSITY OF DIYALA

Row-Major Order : Example

- <u>Example</u>: Consider a two dimension array (N) with size (m=3 × n= 5) and the base address equal (600) and each element of the array occupy 1 byte. find the address the element N[2][3].Suppose the programming store 2D using Row-Major.
- Loc $(N[I][J]) = BA + (n \times I + J) \times Size$
- Loc $(N[2][3]) = 600 + (5 \times 2 + 3) \times 1$
- Loc(N[I][J]) = 613

using Row-Major.

	L.A.	P.A	Memory
Dow 0	N[0][0]	600	
KOW U	:	:	
Dow 1	N[1][0]	605	
KOW I	:	:	
	N[2][0]	610	
	N[2][1]	611	
Row 2	N[2][2]	612	
	N[2][3]	613	
	N[2][4]	614	

Department of Computer Science College of Science

INVERSITY OF DIYALA Linear Data Structure: Array <u>H.W.1:</u> Consider Int X[3][4], what is the address of the X[2][2] if the base address equal (300) and each element of the array occupy 1 byte. Suppose the programming store 2D using Column-Major. <u>H.W.2:</u> Consider Int X[5][3], what is the address of the X[3][2] if the base address equal (100) and each element of the array occupy 2 byte. Suppose the programming store 2D

