
1

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title OOP Programming Fundamentals Module Delivery

Module Type Core ☒ Theory
 ☒ Lecture
 ☒ Lab
 ☐ Tutorial
 ☐ Practical
 ☒ Seminar

Module Code COM-211

ECTS Credits 4

SWL (hr/sem) 100

Module Level 11CO11 Semester of Delivery 2

Administering Department com College cos

Module Leader Ismael Salih Aref e-mail asmaelsalih@uodiyala.edu.iq

Module Leader’s Acad. Title Assist.Lect Module Leader’s Qualification MSC

Module Tutor Name (if available) e-mail E-mail

Peer Reviewer Name Name e-mail E-mail

Scientific Committee Approval
Date

01/07/2024 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module Programming Language c++ Semester 1

Co-requisites module None Semester

2

Module Aims, Learning Outcomes and Indicative Contents

 أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

 Module Objectives

 أهداف المادة الدراسية

The educational objectives of this course are

1- Understanding Core Concepts of OOP:

 Classes and Objects: Understanding the foundational building blocks of OOP,

including how to define classes (blueprints) and create objects (instances of

classes).

 Encapsulation: Learning how to bundle data (attributes) and methods

(functions) that operate on the data into a single unit or class, promoting

data hiding and reducing complexity.

 Inheritance: Grasping how new classes can be derived from existing ones,

allowing for code reuse and the creation of hierarchical class structures.

 Polymorphism: Understanding how different classes can be treated as

instances of the same class through interfaces, allowing for flexibility in code

through method overriding and overloading.

 Abstraction: Learning to focus on essential qualities of an object while hiding

unnecessary details, making complex systems easier to manage.

2- Developing Problem-Solving Skills:

 Modeling Real-World Systems: Teaching students to represent real-world

entities as objects, helping to develop systems that are intuitive and

maintainable.

 Design Patterns: Introducing common design patterns that solve recurring

problems in OOP, fostering best practices in software development.

 Code Reusability: Emphasizing the importance of creating reusable, modular

code that can be easily extended and maintained.

3- Improving Software Design and Architecture:

 Software Design Principles: Educating students on principles like SOLID

(Single Responsibility, Open/Closed, Liskov Substitution, Interface

Segregation, Dependency Inversion) to create well-structured and robust

code.

 Object-Oriented Analysis and Design (OOAD): Training students to analyze

and design software systems using OOP principles, focusing on creating

scalable and maintainable architectures.

4- Enhancing Team Collaboration and Code Maintenance:

 Version Control Integration: Learning to use version control systems (e.g.,

Git) in the context of OOP projects to manage code changes collaboratively.

 Code Documentation and Comments: Understanding the importance of

documenting code, especially in large, object-oriented projects, to facilitate

collaboration and maintenance.

 Testing and Debugging: Gaining skills in writing unit tests for classes and

objects, and learning debugging techniques specific to object-oriented

codebases.

3

Module Learning

Outcomes

 مخرجات التعلم للمادة الدراسية

1. Knowledge and Understanding:

 MLO 1: Demonstrate a comprehensive understanding of the fundamental

principles of Object-Oriented Programming, including concepts such as

classes, objects, inheritance, polymorphism, encapsulation, and abstraction.

 MLO 2: Understand and apply the principles of software design and

architecture, including the use of design patterns and best practices in OOP.

 MLO 3: Explain the benefits and limitations of the OOP paradigm in software

development, including its impact on code reusability, maintainability, and

scalability.

2. Cognitive/Intellectual Skills:

 MLO 4: Analyze real-world problems and design effective OOP solutions by

modeling appropriate classes, objects, and relationships.

 MLO 5: Critically evaluate and apply design patterns to solve common

software design problems.

 MLO 6: Assess the trade-offs between different object-oriented designs in

terms of efficiency, complexity, and scalability.

3. Practical/Professional Skills:

 MLO 7: Develop and implement object-oriented software using a relevant

programming language (e.g., Java, C++, Python) that adheres to industry

standards and best practices.

 MLO 8: Apply techniques for debugging, testing, and maintaining object-

oriented code, including the use of unit tests and version control systems.

 MLO 9: Work collaboratively in a team environment to design and develop a

substantial object-oriented software project, demonstrating effective

communication and project management skills.

4. Key Transferable Skills:

 MLO 10: Demonstrate problem-solving skills by breaking down complex

problems into manageable components using OOP techniques.

 MLO 11: Communicate technical information effectively, both verbally and in

writing, through documentation, code comments, and presentations.

 MLO 12: Adapt to new and emerging technologies in object-oriented

programming, demonstrating lifelong learning and the ability to stay current

with industry trends.

Indicative Contents

 المحتويات الإرشادية

The indicative content of an Object-Oriented Programming (OOP) course
includes an introduction to core concepts like classes, objects, inheritance,
encapsulation, polymorphism, and abstraction, along with advanced topics
such as composition vs. inheritance, design patterns, and SOLID principles. It
also covers object-oriented analysis and design (OOAD), practical
implementation in a chosen programming language, and testing/debugging
techniques. Students will work on hands-on projects, including collaborative
team development, integrating OOP with databases, and exploring modern
frameworks and libraries. The course concludes with discussions on
contemporary OOP languages, emerging trends, and the future direction of
software development.

4

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

 Lectures

 Tutorials

 Problem solving

 Lab

 Case study

 Small project

Student Workload (SWL)

 اسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
60

Structured SWL (h/w)

أسبوعياالحمل الدراسي المنتظم للطالب
4

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
40

Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
2.66

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
100

Module Evaluation

 تقييم المادة الدراسية

As
Time/Number Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 3 10% (10) 4 and 9 LO #1, #2 and #10, #11

Assignments 3 5% (5) 5 and 12 LO #3, #4 and #6, #7

Projects / Lab. 2 10% (10) Continuous All

Report 1 10% (10) 13 LO #5, #8 and #10

Summative

assessment

Midterm Exam 2hr 10% (10) 7 LO #1 - #7

Final Exam 2hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Material Covered

Week 1 Introduction to inheritance

Weeks

2,3
Type of inheritance

5

Weeks

4,5,6
Constructor inheritance , friend function , virtual function

Week 7 Mid-term Exam

Weeks

8,9
UML Diagrams

Weeks

10 and 11
SOLID Principles

Weeks

12 and 13
Interfaces and abstract classes , Abstract Methods

Week 14 polymorphism

Week 15 template

Week 16 Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

 المنهاج الاسبوعي للمختبر
Week Material Covered

Weeks

1 and 2
Apply inheritance

Weeks

 3 and 4
Methods and data member inheritance

Weeks

5,6 and 7
Constructor inheritance

Weeks

8 and 9
 friend function, virtual function

Weeks

10,11 and

12

Interfaces and abstract classes , Abstract Methods

Weeks

13 and 14
Polymorphism examples.

Week 15 Template examples.

Learning and Teaching Resources

 مصادر التعلم والتدريس
 Text Available in the Library?

6

Required Texts

 Programming in C++

Frank Vahid and Roman Lysecky
Available through the zyBooks website directly

 A C++ compiler and/or IDE. There are many out there,
but the only two that are officially supported:

- CLion (on Windows and macOS)

- Visual Studio (Windows only)

Yes

Recommended

Texts

 Think Like a Programmer, An Introduction to Creative
Problem Solving

V. Anton Spraul
ISBN: 978-1593274245

 A good text editor, such as:
 Notepad++ (This is my personal favorite)
 Sublime Text
 Atom, or Vim, or anything else you might prefer

No

Websites
 1-http://www.cplusplus.com/

2-https://www.w3schools.com/cpp/

 Grading Scheme
 مخطط الدرجات

Group Grade التقدير Marks % Definition

Success Group
(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail (49-45) (قيد المعالجة)راسب More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

