MODULE DESCRIPTION FORM ## نموذج وصف المادة الدراسية | Module Information
معلومات المادة الدراسية | | | | | | | |---|-------------------|-------------------------|--------------------------------|---------|------------------------------|--| | Module Title | Numerical Methods | | S | Modu | le Delivery | | | Module Type | Basic | | | | ⊠Theory
⊠Lecture
□ Lab | | | Module Code | SCI-103 | | | | | | | ECTS Credits | | 5 ⊠ Tutorial □Practical | | | | | | SWL (hr/sem) | | 125 | ⊠Seminar | | | | | Module Level | | 2 | Semester of Delivery 3 | | 3 | | | Administering Department | | com | College | science | | | | Module Leader | Iraq ali husseii | า | e-mail iraqali@uodiyala.edu.iq | | | | | Module Leader's Acad. Title | | | Module Leader's Qualification | | | | | Module Tutor | Name (if availa | able) | e-mail E-mail | | | | | Peer Reviewer Name | | Name | e-mail | E-mail | | | | Scientific Committee Approval Date | | 24/08/2024 | Version Number 1.0 | | | | | Relation with other Modules | | | | | | |------------------------------------|--|--|--|--|--| | العلاقة مع المواد الدراسية الأخرى | | | | | | | Prerequisite module | Prerequisite module Computational mathematics Semester 1 | | | | | | Co-requisites module None Semester | | | | | | | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |--|---|--|--|--|--| | أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية | | | | | | | The main objectives of the course are to: • Provide an understanding of numerical methods for solving mathematical problems. • Develop skills in implementing numerical algorithms. • Introduce the application of numerical methods to real-world engineering problems. • Focus on error analysis and computational stability of algorithms. • Teach students how to develop and analyze their own numerical algorithm | | | | | | | Module Learning Outcomes مخرجات التعلم للمادة الدراسية | After completion of the course students are expected to be able to: 1. Understand the fundamental principles of numerical methods. 2. Analyze the accuracy and stability of numerical solutions. 3. Implement numerical algorithms in a programming environment. 4. Apply numerical methods to solve practical engineering and scientific problems. 5. Critically evaluate the performance of different numerical methods. | | | | | | Indicative Contents
المحتويات الإرشادية | Introduction to Numerical Methods and Error Analysis. Solutions of Nonlinear Equations. Numerical Differentiation and Integration. Numerical Solutions of Ordinary Differential Equations. Numerical Linear Algebra. Interpolation and Curve Fitting. Optimization Techniques. Stability and Convergence of Algorithms. | | | | | | Learning and Teaching Strategies
استراتيجيات التعلم والتعليم | | | | | |--|---|---|-----|--| | Strategies • Lectures, La | Strategies • Lectures, Lab Tutorials, Practical Exercises, and Assignments | | | | | Student Workload (SWL) | | | | | | - | الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا | | | | | Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل | 66 | Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا | 4.4 | | | Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل | 48 | Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا | 3.2 | | | Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل | 125 | | | | ## **Module Evaluation** تقييم المادة الدراسية **Relevant Learning** Time/Number Weight (Marks) **Week Due** Outcome Quizzes 2 10% (10) 2,6 and 9,11 LO #2, #6 and #9, #11 **Formative Assignments** 2 10% (10) 3,5 and 10,12 LO #3, #5 and #10, #12 **Home Works** 2,5 and 8,11 LO #2, #5 and #8, #11 assessment 1 10% (10) Report 1 10% (10) 13 LO #13 Projects / Lab. 2 10% (10) Continuous ΑII **Summative Midterm Exam** 2hr 10% (10) 8 LO #8 assessment **Final Exam** 2hr 50% (50) 16 ΑII 100% (100 Marks) **Total assessment** | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|---|--|--|--| | المنهاج الاسبوعي النظري | | | | | | | Material Covered | | | | | Week 1 | Introduction to Numerical Methods * Definitions and classifications * Importance and applications * Overview of error analysis | | | | | Week 2 | Solutions of Nonlinear Equations * Bisection method * Newton-Raphson method * Secant method | | | | | Week 3 | Numerical Differentiation and Integration * Trapezoidal rule * Simpson's rule * Numerical differentiation formulas | | | | | Week 4 | Numerical Solutions of ODEs * Euler's method * Runge-Kutta methods * Stability of ODE solutions | | | | | Week 5 | Numerical Linear Algebra * Gaussian elimination * LU decomposition * Iterative methods | | | | | Week 6 | Interpolation * Lagrange interpolation * Newton's divided difference * Spline interpolation | | | | | Week 7 | Midterm Exam | | | | | Week 8 | Optimization Techniques * Unconstrained optimization * Constrained optimization * Applications in engineering | |---------|---| | Week 9 | Stability and Convergence * Analysis of numerical algorithms * Convergence criteria * Practical examples | | Week 10 | Case Studies and Applications * Application of numerical methods in engineering * Discussion of case studies | | Week 11 | Introduction to Numerical Methods * Definitions and classifications * Importance and applications * Overview of error analysis | | Week 12 | Solutions of Nonlinear Equations * Bisection method * Newton-Raphson method * Secant method | | Week 13 | Numerical Differentiation and Integration * Trapezoidal rule * Simpson's rule * Numerical differentiation formulas | | Week 14 | Numerical Solutions of ODEs * Euler's method * Runge-Kutta methods * Stability of ODE solutions | | Week 15 | Numerical Linear Algebra * Gaussian elimination * LU decomposition * Iterative methods | | Delivery Plan (Weekly Lab. Syllabus) | | | | | | |--------------------------------------|--|--|--|--|--| | | المنهاج الاسبوعي للمختبر | | | | | | | Material Covered | | | | | | Weeks 1 and 2,3 | Introduction to Numerical Software * Overview of software tools used for numerical analysis * Setting up the environment * Basic operations | | | | | | Weeks
4 and 5,6 | Nonlinear Equations * Implementing bisection method * Implementing Newton-Raphson method * Comparison of methods | | | | | | Weeks
7,8 and 9 | Numerical Integration * Implementing trapezoidal and Simpson's rule * Numerical differentiation * Error analysis | | | | | | Weeks | | |-----------|---| | 9 and 10 | Ordinary Differential Equations * Implementing Euler's method * Implementing Runge-Kutta | | ,11 | methods * Solving real-world problems | | Weeks | | | 12,14 and | Linear Algebra * Implementing Gaussian elimination * LU decomposition * Solving systems of linear | | 14 | equations | | Learning and Teaching Resources
مصادر التعلم والتدريس | | | | | |--|---|---------------------------|--|--| | | Text | Available in the Library? | | | | Required Texts | Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th Edition). Cengage Learning. Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers (7th Edition). | | | | | Recommended
Texts | Sauer, T. (2012). Numerical Analysis. Pearson. Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd Edition). Wiley. | | | | | Websites | | | | | | Grading Scheme
مخطط الدر جات | | | | | | |--|-------------------------|---------------------|----------|---------------------------------------|--| | Group Grade التقدير Marks % Definition | | | | Definition | | | | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | | | B - Very Good | جيد جدا | 80 - 89 | Above average with some errors | | | Success Group
(50 - 100) | C - Good | ختر | 70 - 79 | Sound work with notable errors | | | (30 - 100) | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | | | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | | Fail Group | FX – Fail | راسب (قيد المعالجة) | (45-49) | More work required but credit awarded | | | (0 – 49) | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.