MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Numerical Methods		S	Modu	le Delivery	
Module Type	Basic				⊠Theory ⊠Lecture □ Lab	
Module Code	SCI-103					
ECTS Credits		5 ⊠ Tutorial □Practical				
SWL (hr/sem)		125	⊠Seminar			
Module Level		2	Semester of Delivery 3		3	
Administering Department		com	College	science		
Module Leader	Iraq ali husseii	า	e-mail iraqali@uodiyala.edu.iq			
Module Leader's Acad. Title			Module Leader's Qualification			
Module Tutor	Name (if availa	able)	e-mail E-mail			
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		24/08/2024	Version Number 1.0			

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	Prerequisite module Computational mathematics Semester 1				
Co-requisites module None Semester					

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
The main objectives of the course are to: • Provide an understanding of numerical methods for solving mathematical problems. • Develop skills in implementing numerical algorithms. • Introduce the application of numerical methods to real-world engineering problems. • Focus on error analysis and computational stability of algorithms. • Teach students how to develop and analyze their own numerical algorithm					
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	After completion of the course students are expected to be able to: 1. Understand the fundamental principles of numerical methods. 2. Analyze the accuracy and stability of numerical solutions. 3. Implement numerical algorithms in a programming environment. 4. Apply numerical methods to solve practical engineering and scientific problems. 5. Critically evaluate the performance of different numerical methods.				
Indicative Contents المحتويات الإرشادية	 Introduction to Numerical Methods and Error Analysis. Solutions of Nonlinear Equations. Numerical Differentiation and Integration. Numerical Solutions of Ordinary Differential Equations. Numerical Linear Algebra. Interpolation and Curve Fitting. Optimization Techniques. Stability and Convergence of Algorithms. 				

Learning and Teaching Strategies استراتيجيات التعلم والتعليم				
Strategies • Lectures, La	Strategies • Lectures, Lab Tutorials, Practical Exercises, and Assignments			
Student Workload (SWL)				
-	الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	66	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	4.4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	48	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.2	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation تقييم المادة الدراسية **Relevant Learning** Time/Number Weight (Marks) **Week Due** Outcome Quizzes 2 10% (10) 2,6 and 9,11 LO #2, #6 and #9, #11 **Formative Assignments** 2 10% (10) 3,5 and 10,12 LO #3, #5 and #10, #12 **Home Works** 2,5 and 8,11 LO #2, #5 and #8, #11 assessment 1 10% (10) Report 1 10% (10) 13 LO #13 Projects / Lab. 2 10% (10) Continuous ΑII **Summative Midterm Exam** 2hr 10% (10) 8 LO #8 assessment **Final Exam** 2hr 50% (50) 16 ΑII 100% (100

Marks)

Total assessment

Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	Introduction to Numerical Methods * Definitions and classifications * Importance and applications * Overview of error analysis			
Week 2	Solutions of Nonlinear Equations * Bisection method * Newton-Raphson method * Secant method			
Week 3	Numerical Differentiation and Integration * Trapezoidal rule * Simpson's rule * Numerical differentiation formulas			
Week 4	Numerical Solutions of ODEs * Euler's method * Runge-Kutta methods * Stability of ODE solutions			
Week 5	Numerical Linear Algebra * Gaussian elimination * LU decomposition * Iterative methods			
Week 6	Interpolation * Lagrange interpolation * Newton's divided difference * Spline interpolation			
Week 7	Midterm Exam			

Week 8	Optimization Techniques * Unconstrained optimization * Constrained optimization * Applications in engineering
Week 9	Stability and Convergence * Analysis of numerical algorithms * Convergence criteria * Practical examples
Week 10	Case Studies and Applications * Application of numerical methods in engineering * Discussion of case studies
Week 11	Introduction to Numerical Methods * Definitions and classifications * Importance and applications * Overview of error analysis
Week 12	Solutions of Nonlinear Equations * Bisection method * Newton-Raphson method * Secant method
Week 13	Numerical Differentiation and Integration * Trapezoidal rule * Simpson's rule * Numerical differentiation formulas
Week 14	Numerical Solutions of ODEs * Euler's method * Runge-Kutta methods * Stability of ODE solutions
Week 15	Numerical Linear Algebra * Gaussian elimination * LU decomposition * Iterative methods

Delivery Plan (Weekly Lab. Syllabus)					
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Weeks 1 and 2,3	Introduction to Numerical Software * Overview of software tools used for numerical analysis * Setting up the environment * Basic operations				
Weeks 4 and 5,6	Nonlinear Equations * Implementing bisection method * Implementing Newton-Raphson method * Comparison of methods				
Weeks 7,8 and 9	Numerical Integration * Implementing trapezoidal and Simpson's rule * Numerical differentiation * Error analysis				

Weeks	
9 and 10	Ordinary Differential Equations * Implementing Euler's method * Implementing Runge-Kutta
,11	methods * Solving real-world problems
Weeks	
12,14 and	Linear Algebra * Implementing Gaussian elimination * LU decomposition * Solving systems of linear
14	equations

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	 Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th Edition). Cengage Learning. Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers (7th Edition). 			
Recommended Texts	 Sauer, T. (2012). Numerical Analysis. Pearson. Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd Edition). Wiley. 			
Websites				

Grading Scheme مخطط الدر جات					
Group Grade التقدير Marks % Definition				Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.