MODULE DESCRIPTION FORM # نموذج وصف المادة الدراسية | Module Information
معلومات المادة الدراسية | | | | | | | |---|--------------------------------|--------------------|--------------------------|-------------------------------|---|-------| | Module Title | Data Structure | | | Modu | ıle Delivery | | | Module Type | | Core | | | ⊠Theory | | | Module Code | COM-212 | | | | ⊠Lecture
⊠Lab
□Tutorial
□Practical | | | ECTS Credits | 6 | | | | | | | SWL (hr/sem) | 150 | | | Seminar | | | | Module Level | | 2 | Semester o | f Delivery 3 | | 3 | | Administering Dep | partment | Type Dept. Code | College | Type College Code | | | | Module Leader | Ali Abdulrahman Mahmood e-mail | | alialani@uodiyala.edu.iq | | | | | Module Leader's Acad. Title | | lecturer assistant | Module Lea | lodule Leader's Qualification | | Ph.D. | | Module Tutor | Name (if available) | | e-mail | E-mail | | | | Peer Reviewer Name | | Name | e-mail | E-mail | | | | Scientific Committee Approval Date | | 01/8//2024 | Version Number 1.0 | | | | | Relation with other Modules | | | | | | |------------------------------------|--|--|--|--|--| | العلاقة مع المواد الدراسية الأخرى | | | | | | | Prerequisite module | Prerequisite module COM-121 Semester 1 | | | | | | Co-requisites module None Semester | | | | | | | Module Aims, Learning Outcomes and Indicative Contents
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية | | | | | |--|--|--|--|--| | | العداف المدان الدراسية ولفاتع المعتويات الإراسة | | | | | Module Objectives
أهداف المادة الدراسية | The objective required of the student in order to successfully pass the course requirements is to understand how - through - data is represented and stored - inside the calculator. The student's realization of the types of algorithms used in data representation. Developing the student's ability to use the software available in this field, in addition to the skills he acquires in data processing and how they are represented inside the calculator. Developing the student's ability to write software that handles data and how to represent it in a calculator. | | | | | | Important: Write at least 6 Learning Outcomes, better to be equal to the | | | | | | number of study weeks. | | | | | | Display an Introduction to Data structures. | | | | | | 2. List the Strategies for choosing the right data structure. | | | | | | 3. Explain the first Linear data structures- Array. | | | | | Module Learning | 4. Explain the Pointer and its operations, applications. | | | | | Outcomes | 5. Describe the Structure. | | | | | | 6. Define the Linked list and its operations, applications. | | | | | مخرجات التعلم للمادة الدراسية | 7. Identify the second Linear Data Structure: The Stack | | | | | | 8. Discuss the third Linear Data Structure: The Queue | | | | | | 9. Explain the The Graph | | | | | | 10. Explain the The Tree. | | | | | | 11. Identify the Heaps and its operations | | | | | | 12. Describe the searching, sorting Indicative content includes the following. | | | | | | Basics • | | | | | | Algorithm Specifications: Performance Analysis and Measurement (Time and space | | | | | | analysis of algorithms- Average, best and worst case analysis) | | | | | | Introduction To Data Structure: | | | | | | Data Management concepts, | | | | | | Data types – primitive and non-primitive, | | | | | | • Types of Data Structures- Linear & Non Linear Data Structures. Linear Data | | | | | Indicative Contents | Structure | | | | | المحتويات الإرشادية | • Array: Representation of arrays, Applications of arrays, sparse matrix and its | | | | | <u> </u> | representation., | | | | | | • Stack: Stack-Definitions & Concepts, Operations On Stacks, Applications of Stacks, | | | | | | Polish Expression, Reverse Polish Expression And Their Compilation, Recursion, Tower | | | | | | of Hanoi, | | | | | | • Queue: Representation Of Queue, Operations On Queue, Circular Queue, Priority | | | | | | Queue, Array representation of Priority Queue, Double Ended Queue, Applications of | | | | | | Queue, • Linked List: Singly Linked List, Doubly Linked list, Circular linked list ,Linked | | | | | | implementation of Stack, Linked implementation of Queue, Applications of linked list. | | | | #### Nonlinear Data Structure: - Tree-Definitions and Concepts, Representation of binary tree, Binary tree traversal (Inorder, postorder, preorder), - Threaded binary tree, - Binary search trees, - Conversion of General Trees To Binary Trees, - Applications Of Trees- Some balanced tree mechanism, eg. AVL trees, 2-3 trees, Height Balanced, Weight Balance, - Graph-Matrix Representation Of Graphs, Elementary Graph operations, (Breadth First Search, Depth First Search, Spanning Trees, Shortest path, Minimal spanning tree). SORTING And SEARCHING - Insertion Sort, - Quick Sort. - Merge Sort, - Heap Sort, - Sorting On Several Keys, - List and Table Sort, ## **Learning and Teaching Strategies** ### استراتيجيات التعلم والتعليم - At the start of course, the course delivery pattern, prerequisite of the subject will be discussed. - Lectures will be conducted with the aid of multi-media projector, black board, OHP etc. - Attendance is compulsory in lecture which carries 10 marks in overall evaluation. - One internal exam will be conducted as a part of internal theory evaluation. - Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation. - Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation. - The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures. - Experiments shall be performed in the laboratory related to course contents. ### **Strategies** #### | Total SWL (h/sem) | 150 | |---------------------------------------|-----| | الحمل الدراسي الكلي للطالب خلال الفصل | 150 | | Module Evaluation
تقييم المادة الدراسية | | | | | | |--|-----------------|-------------|------------------|------------|---------------------------| | | | Time/Number | Weight (Marks) | Week Due | Relevant Learning Outcome | | | Quizzes | 2 | 10% (10) | 4 and 8 | LO #1, #2 and #3 | | Formative | Assignments | 2 | 10% (10) | 6 and 14 | LO #3, #4 and #6, #7 | | assessment | Projects / Lab. | 1 | 10% (10) | Continuous | All | | | Report | 1 | 10% (10) | 15 | LO #5, #8 and #10 | | Summative | Midterm Exam | 2hr | 10% (10) | 7 | LO #1 - #7 | | assessment | Final Exam | 3hr | 50% (50) | 16 | All | | Total assessment | | | 100% (100 Marks) | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|---|--|--|--| | المنهاج الاسبوعي النظري | | | | | | | Material Covered | | | | | Week 1 | an Introduction to Data structures. | | | | | Week 2 | the Strategies for choosing the right data structure. | | | | | Week 3 | the Linear data structures- Array /one dimensional array | | | | | Week 4 | An array/ two dimensional array | | | | | Week 5 | the Pointer and its operations, applications | | | | | Week 6 | the Structure. | | | | | Week 7 | Mid- term Exam | | | | | Week 8 | the Linked list, linked list types and its operations, applications | | | | | Week 9 | the second Linear Data Structure: The Stack | | | | | Week 10 | the third Linear Data Structure: The Queue | | | | | Week 11 | The Graph | | | | | Week 12 | The Tree, binary tree | | | | | Week 13 | the Heaps and its operations | | | | | Week 14 | Sorting | | | | | Week 15 | Searching, Searching types | | | | | Week 16 | Preparatory week before the final Exam | | | | | Delivery Plan (Weekly Lab. Syllabus) | | | | | |--------------------------------------|---|--|--|--| | المنهاج الاسبوعي للمختبر | | | | | | | Material Covered | | | | | Week 1 | Introduction to C++ Programming Language. | | | | | Week 2 | 1D array operations | | | | | Week 3 | 2D array operations | | | | | Week 4 | structures & pointers in C | | | | | Week 5 | Write a program for linked list insertion, deletion & copy | | | | | Week 6 | Stack operations Write a program to perform PUSH, POP, PEEP & CHANGE operations on Stack using array. | | | | | Week 7 | Stack operations Write a program to perform PUSH, POP, PEEP & CHANGE operations on Stack using linked list. | | | | | Week 8 | Midterm Exam | | | | | Week 9 | Queue Operations Write a program to implement insertion & deletion in a queue using array. | | | | | Week 10 | Queue Operations Write a program to implement insertion & deletion in a queue using linked list. | | | | | Week 11 | Circular Queue Operations Write a program to implement insertion & deletion in a circular | | | | | Week 12 | Sorting and searching: Write a program to perform ◆ Selection sort | | | | | Week 13 | Sorting and searching: Write a program to perform • Merge sort | | | | | Week 14 | Sorting and searching: Write a program to perform • Quick sort | | | | | Week 15 | Preparatory week before the final Exam | | | | | Learning and Teaching Resources | | | | | |---------------------------------|--|---------------------------|--|--| | مصادر التعلم والتدريس | | | | | | | Text | Available in the Library? | | | | | 1-Tanenbaum Aaron M, Langsam Yedidyah, Augenstein J | | | | | | Moshe, Data Structures using C. | | | | | Required Texts | 2-Tremblay J.P and Sorenson P.G, An introduction to data | Yes | | | | | structures with applications, Tata McGraw Hill, 2nd | | | | | | Edition | | | | | | 1-Fundamentals of Computer Algorithms by Horowitz, | | | | | | Sahni,Galgotia Pub. 2001 ed. 4. | | | | | Recommended | 2-Fundamentals of Data Structures in C++-By Sartaj | | | | | Texts | Sahani. | yes | | | | | 3- Data Structures: A Pseudo-code approach with C -By | | | | | | Gilberg & Forouzan Publisher-Thomson Learning | | | | | Websites | Data Structures by Lipschutz Seymour [Schaum's Outline] | | | | | Grading Scheme
مخطط الدر جات | | | | | | |---------------------------------|-------------------------|---------------------|----------|---------------------------------------|--| | Group | Grade | التقدير | Marks % | Definition | | | | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | | 6 | B - Very Good | جيد جدا | 80 - 89 | Above average with some errors | | | Success Group
(50 - 100) | C - Good | ختخ | 70 - 79 | Sound work with notable errors | | | (30 - 100) | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | | | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | | Fail Group | FX – Fail | راسب (قيد المعالجة) | (45-49) | More work required but credit awarded | | | (0 – 49) | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.